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ABSTRACT 
 
An experimental solar tent dryer under natural convection was used to study thin layer 
drying kinetics of amaranth (Amaranthus cruentus) grains. Drying of grains in the 
dryer was carried out on a drying rack having two layers; top and bottom. The 
ambient temperature and relative humidity ranged from 22.6–30.4oC and 25–52%, 
respectively, while the inside temperature and relative humidity in the solar dryer 
ranged from 31.2–54.7oC and 22–34%, respectively. Freshly harvested amaranth 
grains with an average moisture content of 64% were dried under the solar tent dryer 
for seven hours to a final moisture content of 7% (dry basis). A non-linear regression 
analysis was used to evaluate six thin layer drying models (viz., Newton, Page, 
Modified Page, Henderson & Pabis, Logarithmic and Wang & Singh) for amaranth 
grains. The models were compared using coefficient of determination (R2), root mean 
square error (RMSE), reduced chi-square (χ2) and prediction performance (ηp) in 
order to determine the one that best described thin layer drying of amaranth grains. 
The results show that the Page model satisfactorily described the drying of amaranth 
grains with R2 of 0.9980, χ2 of 0.00016 and RMSE of 0.01175 for bottom layer and R2 
of 0.9996, χ2 of 0.00003 and RMSE of 0.00550 for top layer of the drying rack. Based 
on a ±5% residual error interval, the Page model attained the highest prediction 
performance (ηp = 80%) when drying the grains in both layers of the dryer. This 
shows that there was a good agreement between the predicted and experimental 
moisture changes during solar drying of amaranth grains under natural convection. 
The transport of water during dehydration was described by applying the Fick’s 
diffusion model and the effective moisture diffusivity for solar tent drying of 
amaranth grains was found to be 5.88×10-12 m2s-1 at the bottom layer and 6.20×10-12 
m2s-1 at the top layer. High temperatures developed at the top layer of the dryer led to 
high effective moisture diffusivity and this showed that temperature strongly 
influences the mechanism of moisture removal from the grains. 
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INTRODUCTION 
 
Kenya is promoting the use of amaranth grains in alleviating hunger despite the fact 
that many communities are ignorant of its significance in health and food security. 
The crop, a native of South America, is mainly grown for its grain rather than for its 
leaves. Kenyan farmers in regions with marginal rainfall plant amaranth rather than 
maize because they believe there is less risk of a crop failure with amaranth [1]. 
Amaranth seed is small, nearly spherical and attrition-resistant with high nutritional 
value. Amaranth plants have thick, tough stems similar to sunflower and the tiny, 
lens-shaped grains are one millimeter in diameter. The leaves can be cooked like 
spinach while the grains are ground into flour, popped like popcorn and cooked into 
porridge. While amaranth is not a staple food in Kenya, it is still grown and sold as a 
health food.  
 
The potential of both grain and vegetable amaranth as a food resource has been 
reviewed extensively by many researchers [2]. The increasing interest in the 
international community in its growth and use lies in its grains which contain between 
16 and 18% proteins, with  high lysine content. Amaranth grain, cultivated to family 
scale, is exposed to ambient air and naturally dried. When amaranth is cultivated on a 
large scale (25-800 acres), heavy field losses occur as the crop easily shatters the 
grains when dry. To reduce the field losses, amaranth can be harvested with a 
moisture content of about 30% (dry basis) or more with necessary artificial drying to 
reduce the moisture level to about 10% (dry basis) to assure good preservation [3]. 
Drying is one of the cheap and common preservation methods for biological products 
[4]. 
 
Solar drying is a good alternative for farmers in Kenya and other developing countries 
as the dryers can generate relatively high air temperatures and low relative humidity, 
both of which are conducive to improved drying rates. Solar drying is actually a form 
of convective drying in which the air is heated by solar energy obtained from the sun. 
However, it differs from open sun drying in that a simple structure, such as a flat plate 
collector is used to enhance the effect of insolation and minimize loss of collected sun 
energy to the surroundings. Open sun drying depends on weather, temperature and 
relative humidity of the ambient environment. While solar drying has many 
disadvantages over open sun drying, lack of control over weather is a problem in both 
methods. Solar energy and, in general, renewable energy sources are important and 
economical, particularly during energy crises, when the cost of fuel energy increases 
sharply [5].  
 
Due to the elliptical orbiting of the earth around the sun, the distance between the 
earth and the sun fluctuates annually and this makes the amount of energy received on 
the earth’s surface ('scI ) to vary in a manner given by Eq. 1, where Isc is the solar 

constant which is valued at 1367 W/m2 and n is the day of the year. 

'
sc sc

360n
I = I * 1+0.033cos

365

  
    

  (1) 
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The direct solar radiation, Ib, reaching a unit area of a horizontal surface in the 
absence of atmosphere can be expressed as in Eq. 2 [6], where φ is latitude (degrees), 
β is angle of inclination of surface from horizontal (degrees), δ is angle of declination 
(degrees) and ω is hour angle (degrees). 

( ) ( )( )'
b scI = I sin φ-β sinδ+cosδcosωcos φ-β   (2) 

The angle δ is evaluated from the Eq. 3 [7]. On the other hand, ω is computed by Eq. 
4 [8], where Hr is the hour of the day in 24 hour time. 

284 n
23.45sin 360

365

 +  δ =     
 (3) 

r=15(12 - H )ω  (4) 

The diffuse radiation, Id, is that portion of solar radiation that is scattered downwards 
by the molecules in the atmosphere. During clear days, the magnitude of Id is about 10 
to 14% of the solar radiation received at the earth’s surface. Id can be estimated as 
direct radiation incident at 60o on the collector surface by Eq. 5 [8, 9], where C is the 
diffuse radiation factor.  

b
0

bd IC0.560 cosICI ==   (5) 

The total solar radiation, It, incident on the horizontal surface is therefore given by 
adding the direct and diffused components of solar radiation as shown in Eq. 6. The 
total solar radiation is of great importance for solar dryers since it captures the 
required components of solar energy that is harnessed in the dryer. 

0.5C)(1I I bt +=   (6) 

The drying kinetics of food is a complex phenomenon and requires simple 
representations to predict the drying behaviour, and for optimizing the drying 
parameters. The prediction of drying rate of agricultural materials under various 
conditions is important for the design of drying systems. Many research projects on 
the mathematical modeling and experimental studies have been conducted on the thin 
layer drying processes of various agro-based products. However,  little information is 
available on thin layer drying behaviour of amaranth grains [10]. The study was 
therefore undertaken to evaluate the developed drying models in describing thin layer 
drying kinetics of amaranth grains in a natural convection solar tent dryer.  
 
MATERIALS AND METHODS 
 
Study Area 
The thin layer drying experiment was conducted in an open area near the Agricultural 
Processing Engineering Laboratory of Jomo Kenyatta University of Agriculture and 
Technology (JKUAT) in the month of December 2008. JKUAT is located in Juja 
(37.05o E longitude, 1.19o S latitude and at an altitude of 1550 m above sea level). 
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The mean annual temperature of Juja is 18.9oC with mean annual maximum and 
minimum temperatures of 26.1 and 13.6oC, respectively. The relative humidity ranges 
from 15 to 80% [11]. 
 
Experimental Solar Dryer 
The schematic diagram of the natural convection solar tent dryer, used in this study, is 
shown in Figure 1(a). The dryer consisted of a chimney, the main structure with a 
door and a concrete base. The main structure measured 1.85 m wide, 2.73 m long and 
2.55 m high. The top part of this structure was semi-circular in shape with a radius of 
0.5 m and was entirely covered with a polyvinyl chloride (PVC) material. The size of 
the door in this structure is 0.6 m wide and 1.8 m high. A detailed diagram illustrating 
locations of trays in a drying rack is shown in Figure 1(b). Flat and angled iron bars 
were used to fabricate these trays, and a fine wire mesh placed at the top of each layer. 
The entire system was completely sealed from light in order to preserve light sensitive 
nutrients in the drying material. For air circulation purposes, a protruding chimney 
was provided at the top center of this structure. The design makes the solar dryer less 
costly and affordable in drying most agricultural materials such as amaranth grains. 
 

(a)

Door

Cover materialChimney 

Concrete base

         (b) 0.5m

0.75m
2.
45m

Drying trays

0 .75m

T op Layer

Bottom  Layer

 

Figure 1: (a) Schematic diagram of a natural convection solar tent dryer.  
(b) Diagram showing the arrangement of drying trays in two layers. 

 
 
Sample Preparation and Drying Conditions 
Light yellow Amaranthus cruentus seeds were planted in finely prepared soil and 
firmed to assure good seed-to-soil contact. The rains were not adequate during the 
period of October 2008 and irrigation was therefore necessary to ensure good 
germination. Germination took three to four days with no fertilizers applied and the 
weeding process between rows was done after two weeks. The plants were thinned 
after three weeks of germination in order to leave three plants per hole. This was 
followed by another thinning after two more weeks which left one plant per hole in 
order to provide sufficient air and sunlight to the crop. After about 90 days, fresh 
amaranth grains were harvested with a moisture content of approximately 64% (dry-
basis). Grain samples were detached from the seed heads and hand cleaned to remove 
any foreign material before being dried. Figure 2 shows a sample of the cleaned 
amaranth grains.  
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Figure 2: Cleaned amaranth (Amaranthus cruentus) grains 
 
A sample of approximately 50 g was evenly spread on a drying tray (0.25 m × 0.25 
m) to form a single layer. Two layers (i.e. top and bottom layers) in the drying rack 
were used in the dryer. The data were recorded at 0.5 hour intervals from 9:00 a.m. to 
16:00 p.m. The capacity and sensitivity of Shimadzu electronic balance (LIBROR 
EB-4300D, Japan) used were 600 and 0.01 g, respectively. The ambient and inside 
temperatures were taken using thermocouples which relayed data to a Thermodac 
electronic data-logger (ETO Denki E, Japan), while relative humidity was recorded 
using a digital thermo-hygrometer (HC-520, Hong Kong). The solar radiation data 
were evaluated from electronic world satellite solar maps.  
 
Prediction Accuracy of Thin Layer Models 
Thin layer drying is the process of removal of moisture from a porous media by 
evaporation, in which excess drying air is passed through a thin layer of the material 
until the equilibrium moisture content is reached. Numerous mathematical models 
have been developed by various researchers to describe the rate of moisture loss 
during the thin layer drying of agricultural products such as amaranth grains. The 
moisture ratio (MR) of the grains being dried is presented by Eq. 7, where M is the 
moisture content (% dry basis) of the grain at any drying time t (hours), Mo is the 
initial moisture content (% dry basis) of the wet grain and Me is the equilibrium 
moisture content (% dry basis). MR may be simplified to M/Mo instead of (M-
Me)/(Mo-Me) because the value of dynamic equilibrium moisture content Me is very 
small compared to M and Mo [12]. 

eo

e

MM

M  M
MR

−
−=  (7) 
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Another important parameter that should be considered during drying is diffusivity 
which is used to indicate the flow of moisture out of the material being dried [5]. In 
the falling rate period of drying, moisture is transferred mainly by molecular 
diffusion. Moisture diffusivity is influenced mainly by moisture content and 
temperature of the material. For a drying process in which the absence of a constant 
rate is observed, the drying rate is limited by the diffusion of moisture from the inside 
to the surface layer, represented by Fick’s law of diffusion. Assuming that the 
amaranth grains can be approximated to spheres, the diffusion is expressed by Eq. 8 
[13] where De is the effective moisture diffusivity (m2s-1) and ra is the radius (m) of 
amaranth grain. 










∂
∂=

∂
∂

2
a

2

e
r

M
D

t

M  (8) 

 
For the transient diffusion in a sphere, assuming uniform initial moisture content and 
a constant effective diffusivity throughout the sample, the analytical solution of Eq. 8 
yields Eq. 9. 


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−
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e

r

π
 Dexp

π
6

MM

MM
MR t   (9) 

 
The effective moisture diffusivity (De) is determined by applying logarithms to Eq. 9 
to obtain a linear relation of the form shown in Eq. 10. Therefore a plot of ln(MR) 
versus time yields a straight line, and the diffusivity is determined from the slope 
(slope = −Deπ2/ra

2). 

t







−





=

2
a

2

e2 r

π
D 

π
6

lnln(MR)   (10) 

The collected moisture data were used to plot graphs of moisture content against 
drying time, and to evaluate Eq. 11, which is based on the theory of thin layer drying 
[14]. 

kt−= eMR         (11) 

For mathematical modeling, the thin layer drying models in Table 1 were tested to 
select the best one for describing the drying behaviour of amaranth grains. Modeling 
the drying behaviour of different agricultural products often requires the statistical 
methods of regression and correlation analyses. Regression analyses were done using 
the GenStat (Discovery Edition 3) statistical tool. The coefficient of determination 
(R2), reduced chi-square (χ2) and root mean square error (RMSE) were used to 
determine the quality of the fit.  The higher the values of R2, and lower the values of 
χ2 and RMSE, the better the goodness of fit [12, 15, 16]. These parameters were 
calculated using Eq. 12 and Eq. 13, where MRexp,i is the experimental moisture ratio 
found in any measurement and MRpre,i is the predicted moisture ratio for this 
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measurement. N and nc are the number of observations and constants, respectively 
[17].  

( )
c

N

1i

2
ipre,iexp,

2

nN

MRMR
χ

−

−
=
∑

=   (12) 

( )
1/2N

1i

2
iexp,ipre, MRMR

N

1
RMSE 







 −= ∑
=

  (13)  

The prediction performances (ηp) of the drying models were also compared. These 
were determined by Eq. 14, where Nc and Nt represent the number of correctly 
predicted and trial data, respectively [14]. The performance was based on a ±5% 
residual error interval. The absolute residual error (ε) was defined as shown in Eq. 15 
[18]. 

t

c
p N

N
100(%)η ×=   (14) 

100
MR 

)MR-(MR
(%)ε

iexp,

iexp,ipre, ×=   (15) 

 
RESULTS 
 
Figure 3 compares the temperatures developed inside the solar tent dryer and the 
ambient air throughout the drying period. The inside temperatures corresponded to 
bottom and top layers spaced at 0.75 m from the ground surface in the solar tent dryer. 
The results show that the temperatures developed in the top layer were always higher 
than those developed in the bottom layer. This is perhaps due to the closeness to the 
solar energy harnessing surface of the cover material and it confirms that solar tent 
dryers can effectively be used to harness solar energy for drying of agricultural 
products such as amaranth grains [10]. The temperatures in the dryer varied from 
morning to evening with the highest temperatures developed between 12:30 and 13:30 
p.m. The difference between the inside and ambient temperatures was also high 
during this time. Figure 3 also indicates that the solar radiation has a direct effect on 
ambient and inside temperatures. The mean value of ten-year (1996–2005) solar 
radiation data obtained from world satellite map was approximately 6 kW/m2. This 
mean value was slightly lower than the sum of calculated hourly results of solar 
radiation (≈ 8 kW/m2) computed using Eqs. 1–6. Figure 4 presents the relative 
humidity values recorded in the solar tent dryer and the ambient air. The relative 
humidity values in the dryer were always lower than those in the ambient air during 
the drying period. 
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Figure 3: Comparison of temperature and total solar radiation with time on 

December 2008 
 

 
Figure 4: Variation of relative humidity in the ambient air and inside the solar 

tent dryer with time 
 
The drying curves of amaranth grains are shown in Figure 5 where the moisture 
content decreased continuously with drying time. As shown by these curves, the entire 
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thin layer drying process obeyed the falling rate period. Amaranth grains with initial 
moisture content in the range of 61.3–66.7% (dry basis) were dried to a final moisture 
content of 7% (dry basis). It took 3.5 and 4.5 hours to dry amaranth grains to the final 
moisture content for the top layer and bottom layer solar tent drying, respectively. 
Figure 6 shows that the drying rate decreases continuously with decreasing moisture 
content or increasing drying time. These results are in agreement with the 
observations of earlier researchers based on thin layer drying of amaranth grains [19]. 

 
Figure 5:  Variation of moisture content of amaranth grains with drying time  
 

 
Figure 6: Drying rate as a function of moisture content of amaranth grains 
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The regression analyses were done for six thin layer drying models by relating the 
drying time and dimensionless moisture ratio. The acceptability of the model was 
based on a value for the coefficient of determination (R2) that should be close to one, 
and low values for the reduced chi-square (χ2) and root mean square error (RMSE). 
The model coefficients and parameters of error analysis are presented in Tables 2 and 
3. From the regression analysis, it is seen that the Page model satisfactorily described 
the drying of amaranth grains with R2 of 0.9980, χ2 of 0.00016 and RMSE of 0.01175 
for solar tent drying at the bottom layer and R2 of 0.9996, χ2 of 0.00003 and RMSE of 
0.00550 for solar tent drying at the top layer.The prediction performances of the 
drying models based on a ±5% residual error interval are also shown in Tables 2 and 
3. The Page model attained the highest prediction performances of 80% for both 
bottom and top layers of the solar tent dryer. 
 
The continuous decrease in moisture ratio with increase in drying time shows that the 
results can be interpreted by using Fick’s diffusion model. Effective moisture 
diffusivity (De) was calculated using slopes derived from the linear regression of 
lnMR versus time data. The computed De values of amaranth grains under solar tent 
drying at the bottom and top layers were found to be 5.88×10-12 and 6.20×10-12 m2s-1, 
respectively. 
 
DISCUSSION 
 
In order to describe the thin layer kinetics of amaranth grains, temperature and 
relative humidity were monitored in the ambient air and the solar tent dryer. The 
temperatures inside the solar tent dryer were higher than the ambient temperatures 
throughout the drying period. The closeness of the solar energy harnessing surface of 
the PVC cover material led to high temperatures being developed at the top layer of 
the drying rack. The solar radiation has a direct effect on the temperature profile and 
this clearly indicates that the drying rate would be much higher in the solar tent dryer 
under natural convection than the open sun drying. In addition, the results obeyed the 
commonly observed behaviour that relative humidity decreases with increase in 
temperature during solar drying [19]. 
 
In the falling rate period the material surface is no longer saturated with water and the 
drying rate is therefore controlled by diffusion of moisture from the interior of solid to 
the surface [20]. As expected, the decrease of relative humidity in the solar dryer 
increased the drying rate of the grains because a higher driving force is developed. 
Although all models displayed good results, the Page model gave the best description 
of thin layer drying process of amaranth grains in the solar tent dryer. The Page model 
attained the highest R2 and the lowest values of RMSE, χ2 and mean absolute residual 
errors. The residual errors and their corresponding standard deviations were close to 
zero; hence better prediction by the Page model [18]. In addition, the Page model 
achieved satisfactory prediction level (ηp = 80%) as compared to the other models. 
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The effective moisture diffusivities estimated from the drying data represents an 
overall mass transport property of moisture in the material, which may include liquid 
diffusion, vapour diffusion or any other possible mass transfer mechanism. High 
temperatures developed at the top layer of the drying rack in the solar tent dryer led to 
the highest De value and this proves the direct dependency of moisture removal on 
temperature. 
 
CONCLUSION 
 
Thin layer drying studies of Amaranthus cruentus grains were carried out at two 
levels (bottom and top layers) of the natural convection solar tent dryer. The entire 
drying process of amaranth grains occurred in the falling rate period. To explain the 
drying kinetics of amaranth grains, six mathematical drying models were fitted to the 
experimental data. Comparison of the coefficient of determination (R2), reduced chi-
square (χ2), root mean square error (RMSE) and prediction performance (ηp) showed 
that the Page model best described thin layer drying of amaranth grains in the solar 
tent dryer. The Page model attained the highest R2 value and the lowest values of χ2 
and RMSE in both bottom (R2, 0.9980; χ2, 0.00016; RMSE, 0.01175) and top (R2, 
0.9996; χ2, 0.00003; RMSE, 0.00550) layers. High prediction performance (80%) of 
the Page model further confirmed its superiority over the other drying models. The 
effective moisture diffusivity during solar tent drying of amaranth grains was found to 
be 5.88×10-12 m2s-1 at the bottom layer and 6.20×10-12 m2s-1 at the top layer. The 
findings also demonstrate the potential of using natural convection solar tent dryers to 
enhance harnessing of solar energy for drying amaranth grains. 
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Table 1: Mathematical models widely used to describe the drying kinetics 

S/No. Model* Model name References 

1 MR = exp(-kt) Newton [21] 

2 MR = exp(-ktn) Page [22] 

3 MR = exp[-(kt)n] Modified Page [23] 

4 MR = aexp(-kt) Henderson and Pabis [24] 

5 MR = aexp(-kt) + c Logarithmic [25] 

6 MR = 1 + at + bt2 Wang and Singh [26] 

* a, b, c and n are drying coefficients, t is drying time (hours) and k is drying constant (h-1) 

 

 

 

Table 2: Estimated parameters and comparison criteria of moisture ratio for the 
solar tent dryer (bottom layer) 

 

Model 
Model coefficients 

and constants R2 RMSE χ2 ε (%)  ηp(%) 

Newton k = 0.8341 0.9479 0.05938 0.00378 9.9 ± 10.6 46.7 

Page k = 1.1494, n = 0.8171 0.9980 0.01175 0.00016 3.1 ± 2.3 80.0 

Modified Page k = 1.1494, n = 0.8171 0.9976 0.01278 0.00019 2.9 ± 2.4 73.3 
Henderson & 
Pabis a = 0.8105, k = 0.8341 0.9600 0.05206 0.00313 4.6 ± 4.6 73.3 

Logarithmic 
a = 0.7333, k = 0.8446,  
c = 0.0053 0.9320 0.06786 0.00576 4.4 ± 5.9 66.7 

Wang & Singh a = -0.3249, b = 0.0334 0.8584 0.09792 0.01106 34.5 ± 22.5 6.7 
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Table 3: Estimated parameters and comparison criteria of moisture ratio for the 
solar tent dryer (top layer) 

 

Model 
Model coefficients 

and constants R2 RMSE χ2 ε (%)  ηp(%) 

Newton k = 0.8816 0.9360 0.06619 0.00469 15.9 ± 14.7 46.7 

Page k = 1.2969, n = 0.8219 0.9996 0.00550 0.00003 2.9 ± 2.0 80.0 

Modified Page k = 1.2969, n = 0.8219 0.9986 0.00967 0.00011 4.0 ± 3.8 66.7 

Henderson & 
Pabis a = 0.6337, k = 0.8816 0.8638 0.09655 0.01076 6.0 ± 8.4 66.7 

Logarithmic 
a = 0.7277, k = 0.9044,  
c = -0.0049 0.9274 0.07048 0.00621 8.4 ± 6.3 33.3 

Wang & Singh a = -0.3347, b = 0.0353 0.8343 0.10650 0.01309 40.8 ± 24.6 6.7 
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