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ABSTRACT 

 

This research reports a mapping of aflatoxin risk in the milk value chain in Kenya using 

a geographic information systems (GIS) approach. The objective was to spatially locate 

regions at risk by taking into account biophysical and socio-economic factors such as 

humidity and rainfall, dairy cattle density, maize production and travel time to urban 

centres. This was combined with historical data of aflatoxin outbreaks obtained from 

literature search and geo-referenced. Median values for the datasets were then used to 

define the thresholds. Criteria-based mapping using Boolean overlays without weighting 

was implemented in the ArcGIS v10.3 platform. Areas of convergence were overlaid 

with regions of historical outbreaks to come up with likely locations of aflatoxin risk and 

target sample surveys to these areas. Higher resolution maize production and 

consumption data would be desirable to ensure more accurate results. The process 

followed in this project ensures an evidence-based and replicable methodology that can 

be used in other regions and with different crops. Feed and milk samples collected in the 

different categories identified support that this approach can be used to guide sampling 

and regional studies. The research also discusses the strengths and limitations of the 

approach. 

 

Keywords: mycotoxins, Kenya, GIS, risk maps, aflatoxins, East Africa, dairy 

consumption, dairy products 



 
 

 10.18697/ajfand.75.ILRI08 11068 

INTRODUCTION 

 

Aflatoxins are the most researched mycotoxins that contaminate agricultural products, 

especially associated with maize and groundnuts [1]. They occur mostly in the tropics 

and are produced by Aspergillus moulds when environmental conditions are favourable. 

Toxins occur under drought conditions, when plants are more vulnerable to colonization 

by Aspergillus, but are also associated with post-harvest storage conditions that allow 

high humidity [2]. Aflatoxins are regarded as an important food risk in many African 

countries. In 2004, in the worst known outbreak, 125 people out of 317 affected died in 

a region of eastern Kenya [3]. Chronic exposure to mycotoxins can lead to liver cancer, 

and risk is greatly increased among hepatitis B sufferers [4]. 

 

Livestock are also susceptible to acute and chronic mycotoxicosis and milk may be 

contaminated if animal feed or fodder is contaminated with mycotoxins. Rapid 

development of smallholder dairying in Kenya and new cattle feeding practices, such as 

higher levels of concentrates, create potential for new risks from mycotoxins. Kenya has 

more than two-thirds of the dairy cattle population in eastern and southern Africa, and 

the milk consumption is also the highest in the region [5]. The country has more than 

600,000 smallholders, each with between one and three cows, who currently produce 

80% of Kenya's milk, more than three quarters of which is sold through the informal 

sector [6]. There have been no comprehensive studies of the health risk posed by 

mycotoxins in the dairy value chain in Kenya, or the link between intensification and 

risk, and this lack of evidence hinders development of appropriate policy and risk 

management.  

 

Cross-disciplinary approaches to disease epidemiology are becoming more important. 

Geographic information system (GIS)-based mapping can help predict areas at high risk 

for disease occurrence, which can help in targeting surveillance and interventions to areas 

at highest risk. Risk mapping has been widely used in infectious disease epidemiology 

and there have been some applications to mapping the risk of aflatoxins. Monyo [7] 

carried out a study to determine the occurrence and distribution of aflatoxins in 

groundnuts and maize in Malawi. This study captured global positioning system (GPS) 

coordinates of all grain samples and combined these with long-term climatic data to 

produce a pre-harvest aflatoxin risk map. In another study involving aflatoxins, Jaime-

Garcia and Cotty [8] used geostatistics to determine whether geographical location 

significantly influenced the extent to which cottonseed became contaminated with 

aflatoxins and to identify areas with the greatest contamination problems. Weather 

variables were used together with contamination data to determine relationships and 

kriging, an interpolation method that generates an estimated surface from a scattered set 

of points, was used to make estimations in un-sampled areas. Surface maps of aflatoxin 

contamination of cottonseed showed areas with recurrent high aflatoxin contamination 

while other areas showed low contamination. These changing spatial patterns of 

contamination were explained by differences in factors such as precipitation across 

seasons within the regions. 

 

The studies presented above highlight the importance of incorporating GIS into 

epidemiological studies. Using time-based data helps extract information from spatial 
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data; analytical outputs can also be displayed as layers. Data about disease incidence, 

including location, can be incorporated easily in a GIS for comprehensive analyses [9]. 

The results presented here were part of a multi-disciplinary study carried out to assess 

the risk of aflatoxins in the feed-dairy chain in Kenya to human health as well as 

economic costs. Risk of aflatoxins in the feed-dairy chain was mapped to provide an 

overview of potential risk “hot spots” and to guide more detailed fieldwork and sampling. 

 

METHODS 
 

Study area  

The study covered the whole of Kenya, which is primarily a tropical country, though its 

climate varies from tropical along the coast to temperate inland to arid in the north and 

north-eastern parts of the country. Most parts of Kenya have two rainy seasons: the ‘long 

rains’, which occur from March/April to May/June and the ‘short rains’ which occur 

from October to November/ December. There are four main climatic zones, which can 

be further subdivided into agro-ecological zones based on temperature and crop 

suitability (water requirements of leading crops). The Central Highlands and the Rift 

Valley have fertile soils and an annual rainfall of up to 3000 mm. On average, daytime 

temperatures range from 21–26 degrees Centigrade. Western Kenya is hot and wet 

throughout the year with annual rainfall over 1000 mm and average daytime temperatures 

of 27–29 degrees Centigrade. Northern and eastern Kenya are hot and arid with annual 

rainfall of less than 510 mm and daytime temperatures of above 30 degrees Centigrade, 

sometimes soaring up to 39 degrees Centigrade in some desert areas [10].  

 

Generation of data layers 

Literature review was conducted to establish the environmental and socio-economic 

factors that were expected to influence aflatoxin occurrence and that could be spatially 

mapped. Experts were concurrently consulted and came up with a list of factors that were 

judged to potentially influence or predict risk of aflatoxin exposure via the dairy chain. 

The data were categorized into biophysical and socio-economic data. The biophysical 

data in the list of factors were humidity and temperature whilst the factors in the socio-

economic category were dairy cattle density, farming systems and feed resources. 

Following an initial scoping and qualitative survey, two additional factors (milk and 

maize consumption) were added since aflatoxin poisoning can only occur after the 

produce is ingested. The datasets are described in the following section and their data 

sources are indicated in Table 1. 

 

Generation of the dairy cattle density layer 

To create the cattle density map, official cattle numbers were obtained from the Ministry 

of Agriculture, Livestock Development and Marketing in the form of field reports for the 

year 2000 by researchers at the International Livestock Research Institute (ILRI). The 

ILRI researchers then mapped the division-level reports on total cattle numbers as well 

as figures broken down by breed: grade (dairy animals and crosses) and zebu (beef 

cattle). To create an up-to-date map of corresponding division boundaries and division-

level cattle data, researchers made use of the latest division-level boundaries digitized 

from District Development Plans. These cattle density figures were later validated using 

data from the Smallholder Dairy Project (SDP) from 1998 to 2000, which involved a 
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survey of over 3000 households for characterization purposes. This cattle density layer 

was then classified using the median value into two quantiles representing low and high 

cattle density in ArcGIS v10.3 [11]. 

 

Generation of the farming systems layer 

The farming systems map was derived from the global livestock productions map [12] 

and covered Africa, Asia and Latin America. It was based on land cover, human 

population density, length of growing period, temperature and elevation data layers. Ten 

systems were mapped for the developing world using a decision tree which began by 

distinguishing between landless and land-based livestock production systems using a 

threshold of 450 people per square kilometre. Similar steps were followed for the 

subsequent branches of the decision tree until the final classifications were derived [11]. 

Farming systems data for Kenya were then extracted from the global dataset using the 

ArcGIS Spatial Analyst extension v10.3 [11]. 

 

Generation of the dairy feed resources layer 

Several studies have documented the presence of aflatoxin in dairy feeds in Kenya [13, 

14]. For this particular study, only cereals in the form of bran, cake and stover were 

considered because of their relevance to the study. Herrero et al.[15], in their system-

wide study, looked at six different cereals, namely wheat, maize, barley, rice, sorghum 

and millet. The formulae for estimating the feed were calculated by considering the 

following factors: production of grain conversion factor indicating how much straw is 

produced compared to crop yield (derived from harvest indices) utilization factor—the 

fact that cereals are grown in a particular area does not mean that these are actually 

used as feed resources. Other competing uses are as soil amendments or as fuel for 

cooking, proportion of the grain that is turned into agro-industrial by-products (bran), 

proportion of the crop yield giving by-products, for example, oilcakes, dry matter content 

of fresh straw and energy value of the stover expressed in MJ/MT dry matter [15].  

 

Total cereal feed resources in the form of dry matter for Kenya were then extracted from 

the regional layer in ArcGIS Spatial Analyst v10.3 [11]. Classification was done using 

the median value of the data. 

 

Generation of humidity layer 

The CliMond climate dataset [16] consists of gridded historical climate data and some 

future climate scenario data at 10' or 30' spatial resolution. The underlying historical data 

were sourced from the Worldclim and the Climate Research Unit (CRU) (CL1.0 and 

CL2.0) datasets [16]. These data were reformatted, adjusted and recombined to generate 

all of the required data. The Worldclim dataset was drawn primarily on data from 1961 

to 1990, though station records from 1950 to 2000 were used occasionally to fill gaps in 

records. However, the CRU datasets draw exclusively on data from 1961 to 1990 [16]. 

The humidity data for Kenya were then extracted from the global dataset using the 

ArcGIS Spatial Analyst extension v 10.3 [11]. 

 

Generation of the maize consumption layer 

Maize consumption data were sourced from provincial reports for 2002 to 2006. The data 

were represented as total kilogrammes consumed per district per year [17]. The data were 

http://www.worldclim.org/
http://www.cru.uea.ac.uk/cru/data/hrg/
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then classified into two classes using the median value of the data into two quantiles 

within the ArcGIS v 10.3 platform [11]. 

 

Generation of the milk consumption layer 

Increased milk consumption will likely increase aflatoxin exposure by this route. A milk 

consumption study was carried out by the SDP in 2000 in Nairobi and Nakuru to assess 

household dairy consumption and demand patterns [18]. In that study, a questionnaire 

covering various aspects of consumption and expenditure was administered to 210 

randomly selected households, and the data is available at the sub-location level, which 

is a lower administrative level than the maize consumption data. 

 

Determination of locations of historical outbreaks 

Temporal and spatial data of reported historical occurrences/outbreaks of aflatoxicosis 

were obtained in existing literature. Whereas a few of the reported cases were already 

geo-referenced in the reports, the vast majority had been reported at the level of 

administrative units. These were then converted into geo-referenced point locations with 

X and Y coordinates within ArcGIS v 10.3 [11], using centroids as the reference 

locations.  

 

Mapping approach 

Spatial data for each of the factors described above were collated and spatial resolution 

of all the datasets resampled to 1 km pixel size. For those criteria with discrete values, 

for example the farming systems map, knowledge of the specific farming system with 

higher risk for aflatoxin contamination was required. In the case of this study, the 

intensive farming system was treated as the most likely system for occurrence of 

aflatoxins. All the datasets were then transformed into binary maps (0, 1) where 0 = low 

and 1= high. For each criterion, the following reclassifying algorithm in ArcGIS was 

applied: 

 

Reclassify (in_raster, reclass_field, remap, {missing_values}):  

 

Where in_raster is the input criteria being transformed and reclass_field is the field 

denoting the values to be reclassified. 

 

Each of the criteria were considered to have the same weight and therefore there was no 

scoring or ranking. ‘Criteria-based’ mapping using Boolean overlays without weighting 

was then implemented in the ArcGIS v 10.3 platform [11]. This method took the input 

layers and added them together in an additive un-weighted overlay model.  

 

Sampling and aflatoxin testing 

To test if our risk categories would be reflected in aflatoxin levels in milk and feed, 

samples were collected for analysis. Three districts were randomly selected from each of 

the high-risk/historical outbreak, low-risk/historical outbreak and high-risk/no outbreak 

categories, and from each of these, three villages [19]. On arrival at each village, three 

farmers were randomly requested for milk and feed samples, giving a final sample size 

of 81.  
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If farmers gave oral and written consent to participate in the study and to provide 

samples, feeds and bulk milk were sampled. In addition, the farmer was interviewed 

using a simple structured questionnaire on the mode of feeding, storage (mode and time) 

and feeding system. A sample of about 300 g of concentrates or feed grains was collected 

from each household. Samples were collected from the top, middle and bottom of the 

bag containing feed concentrates or grains using a feed sampler, to get representative 

samples from each bag. A sample of about 20 ml of milk was collected in a 50 ml tube 

from each household. Milk samples were placed in a cool box for transport and later 

frozen whereas feed samples were kept at ambient temperature. 

 

Toxins were extracted with 70% methanol from a ground sample. Feeds (concentrates 

and grains) were analysed using competitive enzyme-linked immunosorbent assay 

(ELISA) kits for aflatoxin B1 (Low matrix ELISA, Helica Biosystems Inc, Santa Ana, 

CA). The ELISA was performed according to the manufacturer’s instructions [20]. 

Competitive ELISA for aflatoxin M1 (Low matrix ELISA, Helica Biosystems Inc, Santa 

Ana, CA) was performed following the instructions of the manufacturer.  

 

Statistical analyses were done using STATA 13.0 (StataCorp LP, Texas, USA). The 

proportion of positive samples and the proportion of samples exceeding recommended 

levels of the World Health Organization and the Food and Agricultural Organization of 

the United Nations (5 ppb for feeds and 50 ppt for milk) [20–22] were compared between 

the different categories using chi squared test and the levels of aflatoxins in log (n+0.1) 

analysed for differences between the categories using t-test. 

 

RESULTS 

 

Determination of risk factors 

The dairy cattle density map classification results are shown in Figure 1, where the areas 

with high dairy cattle density are shown in dark brown colour and are the areas 

hypothesized to carry a higher risk for aflatoxin in milk due to higher numbers of dairy 

cattle. The median value used for dairy cattle density was 610 animals per square 

kilometre. The data show that the areas with high cattle density largely cover the central 

and western Kenya highlands. 
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Figure 1: Map showing dairy cattle density in Kenya.  

(Source: Ministry of Livestock and Agriculture Development [23]) 
 

The areas with intensive farming systems are shown in Figure 2 as the dark green areas. 

The rationale for including farming systems as one of the risk factors for aflatoxin 

contamination is that livestock in intensive systems may be at a higher risk of dietary 

exposure to aflatoxins than livestock kept in extensive systems because the former are 

more likely to be receiving nutrient-dense feed containing maize or groundnut products, 

which are more likely to be contaminated with aflatoxins [14]. In Kenya, large parts of 

the country are covered by pastoral or agro-pastoral systems, and intensive livestock 

systems are mainly in the central and western areas (Figure 2). 
 

 
Figure 2: Map showing farming systems in Kenya  

(Derived from Robinson et al. [12]) 
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The map with total cereal feed resources is shown in Figure 3. This map has been 

classified, using the median value of the data, into two quantiles showing areas with low 

and high total cereal feed resources. The median value for total annual feed was 0.1 MT 

per year hence the dark brown areas are the areas above the median. Areas where more 

cereal feed resources (bran, cake and stover) in dry matter form are given to animals were 

considered to be more at risk. 

 

 
Figure 3: Map showing total cereal feed resources in Kenya  

(Source: Herrero et al. [15])  

 

The map showing average relative humidity classified using the median is shown in 

Figure 4. The fungi producing aflatoxins grow better in conditions of warmer 

temperature and higher humidity [24, 25]. Milani [25] further states that whereas there 

are many factors involved in mycotoxin infectivity, such as biological factors, harvesting, 

storage and processing conditions, climate is the most important. In this study, relative 

humidity was used to represent areas of climate suitability for aflatoxins. Initially, 

temperature data had been included as a risk factor, but were later removed upon realising 

that when the same classification methods were used, the areas were completely overlaid 

with those of relative humidity. Therefore, there was no extra information gained from 

the temperature data and only the humidity layer was used in the final risk map. A median 

value for relative humidity was 0.34.                 
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Figure 4: Map showing average relative humidity for Kenya (Kriticos et al. [16])  

 

The map showing maize consumption, classified using the median value in kilogrammes 

per district per year, is shown in Figure 5. The median value was 38,869,209 

kilogrammes per district per year and the areas that have high maize consumption are 

shown in a dark colour. Maize, groundnuts and cottonseed are the crops most prone to 

contamination and visibly spoiled maize is sometimes fed to livestock [26]. In regions 

where there is a higher rate of maize consumption, there is a subsequent higher risk that 

contaminated maize will enter the dairy chain. 

 

 
Figure 5: Map showing maize consumption in Kenya  

(Central Bureau of Statistics [17])  
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The map showing milk consumption is shown in Figure 6. The median value of the data 

was 419,558 litres per square kilometre per year (the dark brown areas in the map are 

above the median). 

 

 
Figure 6: Map showing milk consumption in Kenya (Ouma et al. [18])  

 

The map showing locations of historical occurrences of aflatoxicosis is shown in Figure 

7. It was generated from past reports, which had information on aflatoxicosis outbreaks 

in the country. Most reports did not give explicit coordinates of the outbreaks, instead 

giving information at various administrative units. The mapping therefore was done at 

two levels: point and polygon levels.  

 

 
Figure 7: Map showing historical acute aflatoxicosis outbreak areas in Kenya 

(Source: various reports) 
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The risk map 

The resulting risk map showed administrative areas that met the conditions that had been 

specified in the methods section, indicating areas that were likely to be at risk of aflatoxin 

exposure via the dairy chain. These administrative areas were represented at the third 

administrative or divisional level. The grey areas in the map shown in Figure 8 represent 

the areas of historical outbreaks, while the hatched red areas represent the ‘at risk’ areas 

that were the result of the overlay process. At least 35% of the ‘at risk’ divisions overlaid 

with the historical outbreaks districts were targeted for the survey for aflatoxin 

contamination (Table 2; Figure 8).  

 

 
Figure 8: The risk map resulting from overlaying the risk factors 

 

The average aflatoxin B1 level in animal feeds was 9.25 ppb and the average level of 

aflatoxin M1 in milk was 26.5 ppt (Table 3). There was a significantly higher mean of 

the logarithmic aflatoxin B1 values in the areas with historical outbreaks compared to 

those without outbreaks (mean log [aflatoxin B1+0.1] 1.78 and 0.33, respectively, 

p<0.001), but there was no difference in the mean log of aflatoxin M1 when comparing 

areas with and without outbreaks.  

 

When comparing areas of high risk and areas of low risk, there was a significantly higher 

mean log (aflatoxin M1+0.1) in high-risk areas compared to low-risk areas (1.82 and 

0.37, respectively, p= 0.01). There were also significant differences in levels of the feed 

(Table 3).  
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DISCUSSION 

 

This study demonstrates that GIS technology can be useful in integrating diverse 

datasets, environmental /biophysical and socio-economic, and deriving sensible 

conclusions about the areas that are most at risk for aflatoxin contamination. Generated 

maps can then be used to identify areas that should be targeted for surveys to assess the 

health risk and economic costs of aflatoxins in the dairy value chain, which was done in 

this study.  

 

The limited number of samples analysed in this study showed higher levels of aflatoxin 

B1 in areas of historical outbreaks and higher levels of aflatoxin M1 in high-risk areas. 

There were differences in the proportions of samples exceeding the recommended levels, 

with higher proportions of samples in the high-risk categories. The prevalence of 

aflatoxin B1 in feeds and aflatoxin M1 in milk reported in this study is comparable to 

that of other studies done in Kenya [13, 27, 28]. Although the sample size was limited 

here, this indicates that a risk map done in this way can be useful as a way of directing 

sampling and designing studies.  

 

The historical outbreaks of aflatoxicosis were associated with contaminated maize 

consumption, which could explain the association with higher aflatoxin levels in cattle 

feeds, which are mainly crops. The risk map focused on aflatoxin exposure through milk, 

which may be reflected in the higher levels of aflatoxins in milk in those areas.  

 

This study shows a useful approach to identifying risk areas for further studies, but also 

identifies challenges with the approach and gaps in the knowledge, which will be good 

to address in the future. Particularly, problems in integrating GIS data from diverse 

sources have emerged. All the datasets used in the study came from different sources and 

that made their combination challenging. Some datasets had different spatial coverage 

since different data collection agencies use different systems of recording. Another major 

issue in this study was that of data resolution, whereby some datasets had very fine 

resolution whereas others had coarser resolution and hence less information could be 

gathered from them. Maize and milk consumption data had very coarse resolution and 

this affected the overall quality of the final output. The outbreak/occurrences dataset was 

also of very coarse resolution since most of the information did not have geo-referenced 

initial outbreaks but referred to broad administrative areas which made the whole process 

more generalized rather than specific. The issue of currency of data also emerged since 

datasets like the one on milk consumption were relatively old compared to the rest.  

 

The major weakness of this approach is the binary division of the country into high and 

low risks based on the median. Medians may not always be the best approach for this 

since, depending on the distribution, they may not be representative and may not capture 

if there are other clusters. An alternative approach would be to use natural breaks, which 

can be identified in most GIS software. Natural breaks classes are based on natural 

groupings inherent in the data [11]. Class breaks identify the best group with similar 

values that maximize the differences between classes. The features are divided into 

classes whose boundaries are set where there are relatively large differences in the data 
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values [11]. In addition, milk and maize consumption were mapped based on 

consumption per area, while risk might be more relevant on a per capita basis.  

 

Although the mapping suggested areas of potential high risk for aflatoxins transmitted 

through milk, there was insufficient data on aflatoxin in milk to ground-truth these results 

historically. Some of the assumptions used in selecting layers may not be justified. For 

example, we assumed more intensive farms were at higher risk yet other work from the 

project [19] shows that farmers who do not use much concentrate may feed cattle mouldy 

maize residues which could potentially be more contaminated than concentrates. 

 

CONCLUSION 

 

Geographic information systems (GIS) risk mapping was successfully applied to identify 

geographic areas of potential increased risk in the feed-dairy chain in Kenya. In future 

studies, it would be desirable to invest more in the data collection to ensure better data 

compatibility, finer resolution and hence more accurate outputs. It is also desirable to 

compare estimated risk with actual risk from repeated, probabilistic surveys. 
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Table 1: Sources of data  

 

Dataset Data source 

Dairy cattle density Ministry of Agriculture, Livestock Development and 

Marketing (2000). Modified after ground-truth study 

by the Smallholder Dairy Project in 2005 

Farming systems Sere and Steinfeld, Livestock Systems for Africa 

(2012) 

Feed resources CGIAR Systemwide Livestock Programme (2012) 

Humidity  CliMond Version 1.2 (2012) 

Maize consumption Provincial annual reports (2002– 2006) 

Milk consumption Smallholder Dairy Project consumption study (2000) 

Reported outbreaks Various reports 
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Table 2: Resulting divisions classified to be both at risk and had a history of 

outbreaks 

 

Athi River Ileho Nalondo Mwea 

Bahati Kabazi Nambale Ndivisi 

Bumula Kabras East Navakholo Ngata 

Butere Kabras South Kikuyu Ngong 

Butula Kabras West Kimilili Njoro 

Chepseon Kakuzi Kuresoi Ol-Joro-Orok 

East Wanga Kalama Lamuria Ol Kalou 

Elburgon Kamara Londiani Shaviringa 

Eldama Ravine Kampi Ya Moto Lurambi Shinyalu 

Ewuaso Kedong Kandara Matete Sorget 

Gatanga Kanduyi Matungu South Wanga 

Gichugu Kasarani Mauche Subukia 

Githurai Keringet Molo Thika West 

Ikolomani North Kieni West Mumberes Tongaren 

Ikolomani South Kihumbuini Mumias Ugunja 

      Webuye 
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Table 3: Levels of aflatoxin B1 (in ppb) in farmers’ cattle feed and aflatoxin M1 (in 

ppt) in farmers’ milk, from areas classified as high-risk or low-risk, and 

with previous or no previous outbreaks 

 

 Mean Range Number 
positives 

Number above 5 
ppb aflatoxin B1, 
or 50 ppt 
aflatoxin M1 

Aflatoxin B1 (n=63) 9.3 <0.02-112 58 (92%) 31 (49%) 
High-risk areas (n=50) 8.6 <0.02-112 47 (94%) 21 (42%)* 
Low-risk areas (n=13) 11.6 <0.02-27 11 (85%) 10 (77%) 
Areas with historical outbreaks (n=39) 12.7 <0.02-112 37 (95%) 28 (72%)*** 
Areas with no historical outbreaks (n=24) 3.6 <0.02-24 

 
21 (88%) 3 (13%) 

Aflatoxin M1 (n=80) 26.5 <2-252 56 (70%) 19 (24%) 
High-risk areas (n= 54) 33.7 <2-252 41 (76%) 17 (31%)* 
Low-risk areas (n=26) 11.6 <2-78 15 (58%) 2 (8%) 
Areas with historical outbreaks (n=53) 26.2 <2-105 40 (75%) 14 (26%) 
Areas with no historical (n=27) outbreaks 27 <2-252 16 (59%) 5 (19%) 
 

* p<0.05 compared to the category below   *** p<0.001 compared to the category below    
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