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1. Soybean in ‘African Soils’ 
There is no such thing as a “tropical soil” or an “African soil”. Regardless of the pitfalls 
of referring to soils by their climate or geographic region (Hartemink, 2015), such labels 
egregiously dismiss the tremendous soil diversity in sub-Saharan Africa (Pedro A 
Sanchez, 2002; Pedro A. Sanchez & Logan, 1992). The diversity of soils in the 
subcontinent challenge one-size-fits-all blanket recommendations for any crop. 
Understanding and adapting to soil context is thus critical for effective development and 
delivery of agricultural intensification technologies such as soybean. 
 
Recent and accelerating cultivation of soybean across sub-Saharan Africa has raised 
prospects of a “soybean bonanza” (Foyer et al., 2019; Sinclair, Marrou, Soltani, Vadez, 
& Chandolu, 2014). From production largely as niche crop in the 1960s to nearly 1.5 
million acres in 2016, soybean production is increasing in Africa despite decreasing 
consumption of other legumes (Foyer et al., 2019). Diversification of cropping systems 
with legumes such as soybean can increase food security due to beneficial impacts on 
pest and disease cycles, soil fertility, and as a source of human and/or livestock dietary 
protein (Snapp, Blackie, Gilbert, Bezner-Kerr, & Kanyama- Phiri, 2010). Harnessing the 
potential of Nitrogen fixation of legumes is a promising strategy for sustainable 
intensification of smallholder agricultural systems predicted on multiple soil-plant 
interactions, which for soybean in the African context may require unique consideration 
(Franke, van den Brand, Vanlauwe, & Giller, 2018; Snapp et al., 2010). 
 
Soybean, like other legumes, can also offer a means to improve soil fertility and cropping 
system productivity beyond the soybean crop phase. Nitrogen (N) fixed by a soybean 
crop can contribute significantly to the N needs of ensuing grain crops such as maize. For 
example, up to 22 kg N ha-1 derived from soybean were taken up by following maize 
crops in Guinea (Sanginga, Okogun, Vanlauwe, & Dashiell, 2002), which is higher than 
estimated mean N inputs across SSA of 10 kg ha-1 (van der Velde et al., 2014). Soil 
fertility interventions that target soybean productivity – such as the SIL input bundles – 
can be therefore leveraged by soybean to the benefit of other crops important for food 
security and profitability. 
 
However, soil fertility constraints to N fixation by legumes such as soybean can hamstring 
potential entry point of this crop to act as a fulcrum for improved production. In the 
smallholder agricultural systems that dominate production in much of sub-Saharan Africa 
(Pedro A Sanchez et al., 1997; Smaling, Nandwa, & Janssen, 1997), such soil constraints 
can be especially obstructive. To address these, SIL has focused on input bundles to 
maximize returns on soybean technology. 
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2. The (Soil) Science Behind Bundling: Making the most of soybean’s potential 
Three key components of bundled inputs are: phosphorus, inoculum, and lime. Each 
component targets a specific soil-related constraint in order to maximize the yield 
potential of soybean. Additionally, all components can synergize to amplify investments 
in two or more components. 
 
2.1. Phosphorus 
Phosphorus (P) is a building block of the genetic code (RNA, DNA), a structural 
component of all cells (lipid membrane), and drives energy transactions in cells (ATP, 
NADPH). As for most crops, sufficient soil P availability is critical to support soybean 
growth and yield (Dodd & Mallarino, 2005; Jones, Lutz, & Smith, 1977). Since soybean 
is thought to be able to meet a majority of its N needs via biological N fixation (Gelfand 
& Philip Robertson, 2015; Salvagiotti et al., 2008) and given generally high crop demand 
for P compared to other nutrients (Havlin, Tisdale, Nelson, & Beaton, 2013), P can be a 
key yield-limiting soil nutrient for soybean. 
 
However, the occurrence of weathered soils (Margenot, Singh, Rao, & Sommer, 2016) 
and socioeconomic constraints to smallholder access to P inputs (Nziguheba et al., 2015) 
in sub-Saharan Africa means soybean productivity may be especially constrained by this 
macronutrient. Additionally, soybean has a relatively high P harvest index, with up to 
80% of P uptake allocated to grain (Bender, Haegele, & Below, 2015). Thus, 
replenishing P exported by soybean grain harvest using P inputs is essential for long-
term agroecosystem sustainability. 
 
When soils are managed to offer soybean sufficient P, N fixation can be maximized (van 
Vugt, Franke, & Giller, 2018), and coupled use of P and inoculants can increase grain 
yield (van Vugt et al., 2018). Legumes such as soybean may also be able to preferentially 
scavenge non-available P contained in organic forms via secretion of phosphatases (Lelei 
& Onwonga, 2014; Oberson, Friesen, Tiessen, Morel, & Stahel, 1999; Rao, Borrero, 
Ricaurte, Garcia, & Ayarza, 1997). Meta-analysis suggests improved soil P availability 
to grain crops with the addition of a legume rotation explains non-N effects of legumes 
on non-legume grain yield increases across sub- Saharan Africa (Franke et al., 2018). 
 
2.2. Inoculum 
As with any other legume, biological N fixation by soybean requires a compatible 
symbiotic rhizobacteria generally from the genus Bradyrhizobium. Given its Asian 
origins and historically recent introduction to Africa (Mpepereki, Javaheri, Davis, & 
Giller, 2000), the soybean symbiotic Bradyrhizobium japonicum is generally thought to 
not be present in soils in the continent (van Heerwaarden et al., 2018). Pioneering field 
trials in sub- Saharan Africa attributed limited N fixation by soybean to the absence of 
compatible B. japonicum (Kueneman, Root, Dashiell, & Hohenberg, 1984). Native or 
indigenous Rhizobium strains appear to have generally limited symbiotic effectiveness 
for soybean (Abaidoo, Keyser, Singleton, Dashiell, & Sanginga, 2007). Thus, inoculation 
with appropriate Rhizobium offers a means to enhance soil biological fertility for 
maximizing soybean production in this sub-Sahara Africa. For example, across more 
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than 2,000 trials in ten sub-Saharan African countries, inoculation was found to increase 
soybean yield from a mean of nearly 9% from 1.22 to 1.34 Mg ha- 1, albeit with highly 
variable site-specific response (van Heerwaarden et al., 2018). However, emerging 
evidence suggests that indigenous Rhizobium are able to colonize and effectively 
symbiose with soybean in certain soils in the subcontinent (Jaiswal & Dakora, 2019). 
Though indigenous soil Rhizobium in sub-Saharan Africa appear to differ from those 
found in other subcontinents, it has been proposed that potentially high Rhizobium 
diversity may be harbored in Africa (Grönemeyer & Reinhold-Hurek, 2018) that could 
serve as a rich genetic resource for comparable or even improved inoculants for soybean 
and other leguminous crops in Africa and globally (Jaiswal & Dakora, 2019). 
 
2.3. Lime 
Lime works through multiple mechanisms to alleviate co-constraints to crop production, 
most notably decreasing aluminum toxicity to roots and enhancing the availability of soil 
nutrients already present. While not a nutrient, soil pH is critical for soybean growth 
indirectly via its effects on the availability of nutrients, in particular P and micronutrients, 
and directly via aluminum toxicity. Both of these constraints occur at low pH values 
(acidic soils) making liming an important strategy to enable soybean use of nutrients 
already present or applied to the soil. Soybean is responsive to liming applications that 
increase pH above the threshold of aluminum toxicity (Slaton, Roberts, & Ross, 2011), 
generally thought to be pH > 5.5 (Havlin et al., 2013). 
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