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ABSTRACT 
 
Most of the wild fish stocks in Malawi either are fully or over exploited. This challenge 
underpins importance of forecasting using available data to support sustainable fisheries 
management. The study aimed at modelling and forecasting Catfish (Mlamba) species 
yield from artisan fishery on Lake Malawi in Mangochi District as they are becoming 
important food fish due to decline of more important fish species such as Oreochromis 
(Chambo). The study was based on secondary data on fish catches between1976 and 
2012, collected from Fisheries Research Unit of the Department of Fisheries in Malawi. 
The study considered Autoregressive Integrated Moving Average (ARIMA) processes 
to select an appropriate stochastic model for forecasting the species yield. Appropriate 
models were chosen based on ARIMA (p, d, q). Autocorrelation function (ACF), Partial 
autocorrelation (PACF), Akaike Information Criteria (AIC), Box-Ljung statistics, 
correlogram of residual errors, distribution of residual errors, ME, RMSE, MAPE and 
MAE. Selected model was ARIMA (0, 0, 1) for forecasting artisan landings of Catfish 
from Lake Malawi in Mangochi District from 2013 to 2022. Based on the chosen model, 
forecast for artisan Catfish landings showed mean of 352 tonnes and mean of actual 
catches was 362 tonnes. However, catches in year 2022 are projected to be 360 tonnes, 
slightly below the actual catches mean but above 236 tonnes in 2010, assuming other 
factors remain constant. Confidence intervals of the forecasts included a zero and as such 
over exploitation of the species cannot be ruled out. Landings of the fishery will increase 
to 360 tonnes and remain stable through year 2022 necessitating fisheries management 
consideration to improve the trend.  Policy makers should secure sustainable exploitation 
of Catfish species, among artisan fishery in the study area by controlling all fishing effort 
that lands the species such as gillnets, beach seines, open water seines among others. 
 
Key words: Modelling, Forecasting, Lake Malawi, artisan fishery, Management, Yield 
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INTRODUCTION  
 
The fishery resource in Malawi makes a significant contribution to the Gross Domestic 
Product (GDP) estimated at about 4% [1, 2] and foreign exchange earnings more 
especially on ornamental fish trade. The fishery also provides both direct and indirect 
employment and supply relatively cheap animal protein to the population, thereby 
preventing cases of malnutrition especially in expectant women and children under five 
years of age [2]. Fish resource utilisation is a crucial economic activity, which provides 
a sustainable flow of ecosystem services to human society [3].  
 
However, in many countries fisheries economic efficiency has significantly declined [4]. 
This is caused mainly by over-exploitation, which has been influenced by over 
population. The open access policy to the fishery resource is also blamed for the over 
exploitation [3] as well as weak enforcement [5]. The climatic fluctuations have also 
been reported to be another causative agent for the fishery resources declining [6]. This 
study focused on Catfish as it is becoming an important food fish due to decline of more 
important fish species such as Oreochromis (Chambo). There is need to improve 
management of our fisheries resources to restoration. One of the ways to do that is to 
provide our policy makers with an opportunity to make evidence base decisions [7, 8, 9, 
10]. This is possible if the policy makers are provided with adequate and accurate 
information on the status of the fishery now and in the near future. The status of the 
fisheries stock in the future can be arrived at by forecasting. Forecasting has been used 
lately in fisheries to predict fish landing, fishing effort and aquaculture production on a 
farm. Modelling and forecasting in fisheries can as well assess if employed strategies to 
manage the fisheries resources in an area are efficient or not, in order to develop ways to 
improve them to save the collapsing fisheries.  
 
Fisheries landings are univariate data that can be fitted and forecast by simple time series 
models with a stochastic process generated by unknown causes. The assumption made 
on the time series data is that future values of the series can be predicted as a linear 
combination of previously recorded values and estimates of current and previous random 
shocks to the fishery [11]. Linear regression, autoregressive, moving average, and 
Autoregressive Integrated Moving Average (ARIMA) are some of the models that have 
been applied to forecast the landings and catch per unit effort of different fisheries 
resources [12, 13, 14, 15]. The autoregressive (AR), moving average (MA), 
autoregressive moving average (ARMA) and autoregressive integrated moving average 
(ARIMA) models are applicable where the data series is proved to be stationary. The 
data series that is not stationary is transformed to be stationary through different methods 
such as differencing. This study employed ARIMA models to forecast the artisan fish 
landings of Catfish for the data proved stationary or could be transformed to be 
stationary.  
 
Catfish data used in this study comprised of several species from Clariidae family of 
which Bathyclarias species are most common in the study area; however, they are not 
the most studied member of suborder Siluroidae [16]. The diets of Catfish comprise small 
or young fish, zooplanktons, insect, molluscs, green algae and aquatic vegetation [17]. 
Catfish is an opportunistic omnivore, which can vary food according to availability [18] 
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and can withstand low dissolved oxygen and highly turbid water.  These characters make 
Catfish survive harsh condition, which very few fish species can. These have made the 
species to maintain their stock size relatively stable while the other fish stocks are 
dwindling with the current fisheries management strategies and their implementation 
levels.  
 
METERIALS AND METHODS 
 
Area covered by the study 
This study covered Lake Malawi in Mangochi District on all seven (7) minor strata, 
namely 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 and 3.1 as shown in Figure 1. The study only involved 
the artisan fishery and excluded the commercial fishery that is also in the area as 
modelling and forecasting of commercial fish landings in Mangochi had already been 
done [19]. The artisan fishers employ several fishing efforts that land the species such as 
gillnets, beach seines, open water seines among others. Mangochi district has been 
chosen for this study as it has the highest number of small-scale fisheries compared to 
any other district. The district has the most productive fishery of Lake Malawi as well. 
The artisan fishery has been chosen for this study because it is open access. 
 

 
Figure 1: Map of southern part of Lake Malawi showing all minor strata 2.1 to 3.1 

of Mangochi Districts 
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Source of data 
The study used secondary data of Catfish species landings by artisan fisheries on Lake 
Malawi in Mangochi District from 1976 to 2012. The lake in the district is divided into 
major strata which are farther divided into minor strata. These minor strata have several 
landing sites. These divisions or sections were made to aid management of the fisheries 
resources. The data were collected from Fisheries Research Unit (FRU) at Monkey Bay 
in Mangochi District. Mangochi District has a total of seven (7) strata as shown in Figure 
1. The FRU is under the Department of Fisheries in the Ministry of Agriculture, Irrigation 
and Water Development in Malawi.  
 
Operationalisation of the data variable 
The catch data used were measured in kilograms (wet weight) and converted to tonnage 
annually. The catch was recorded at the fishing landing site soon after landing. Total 
catch from all the seven (7) strata (Figure 1) was summed up respective of individual 
species to come up with specific fish species landings in a particular year. 
 
Descriptive statistics 
The data were univariate. The characteristics of the data were summarized using the 
descriptive statistics shown in the Table 1. 
 
Model identification 
The model identification was carried out by following the process below. 
 
Testing for trend in the time series 
Graphical analysis method and Mann Kendall test were used to detect the presence of 
trends in the time series data set for Catfish (Table 2 and Figure 2). 
 
The trend was not significant in the time series for Catfish. This implied that there was 
no need to remove trend by transforming the data through differencing the data.  
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Figure 2: Annual fish catches between 1976 and 2012 for Catfish landings 

Autocorrelation functions (ACF) 
 
There were significant lags in autocorrelation functions for Catfish (Figure 3). This 
implied that moving average parameters could be determined. The appropriate model for 
the time series for Catfish was the autoregressive integrated moving average (ARIMA) 
model with no differencing for the time series for Catfish. 
 

 
Figure 3: Autocorrelation functions (ACF) for Catfish 
 
Partial autocorrelation functions (PACF) 
There were significant lags in partial autocorrelation functions for Catfish (Figure 4). It 
was already determined from the ACF (Figure 3) that the appropriate model for the time 
series for Catfish was the autoregressive integrated moving average (ARIMA) model 
with no differencing for the time series for Catfish. The partial autocorrelation function 
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showed that the parameters of the autoregressive (AR) part of the ARIMA model could 
be determined.  

 
Figure 4: Partial autocorrelation functions (PACF) for Catfish 
 
The time series data of annual fish landings for the cat fish species were subjected to 
stationarity test. If the data had a trend then differencing was made. Once the data were 
found stationary, correlograms were generated to observe if there were significant lags. 
For the data with significant lags on the correlogram, ARIMA modelling process was 
employed. The AIC was used to identify a better fitting model amongst the fitted possible 
models. The model with lowest AIC was chosen. The best fitting model was later 
subjected to a diagnosis testing to examine how best it fitted the data. If the model passed 
the test, forecasts were made.  
 
The Mean Error (ME), Root Mean Squared Error (RMSE), Mean Absolute Percentage 
Error (MAPE) and Mean Absolute Error (MAE) were used to measure the accuracy of 
the fitted time series models. In addition, RMSE and MAE were used to serve as 
measures for comparing forecast of the same series across different models. The 
conclusion made was that the smaller the error, the better the forecasting power of the 
generated model. These were calculated as follows: 
 
!"# = %&'((|&+|)             (1) 
 
Where &+ = -+ − -/+ and -+ is the ith observation and -/+ is the forecast of -+. 
 

0!1# = 2%&'((&+
3)            (2)   

 
 
!"4# = %&'((|4+|)             (3) 
 
Where 4+ = 5

67

87
9 ∗ 100 

 
Model specification 
R software version 3.1.3 (2015 – 03 – 09) was used in this study where autoregressive 
integrated moving average (ARIMA) was employed to model and forecast the data. 
However, before the modelling technique was employed, the data were tested for 
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seasonality using two methods just to be sure that the data were indeed stationary before 
the process of modelling. The two methods for testing seasonality in this study were 
graphical analysis method and the Dickey–Fuller test. The graphical analysis method 
involved observing whether the data had a constant variance or not. If the data had no 
constant variance, it was regarded not stationary and vice versa. Whereas with the 
Dickey–Fuller test, the data with a p-value of < 0.05 was regarded to be not stationary 
and vice versa. The data were not differenced, as they were not significantly different to 
stationarity test, hence ready for modelling. The ARIMA modelling techniques required 
the data to be stationary.  
 
The count time series of Catfish yields short term forecasts were made by employing 
ARIMA modelling process by Box and Jenkins [20]. The species showed that their 
annual yields were correlating with the yield from the previous year as proved by the 
autocorrelogram and partial autocorrelogram in Figure 3 and 4 respectively. Literature 
has shown that ARIMA has been employed successfully in modelling and forecasting 
fish landings, hence this study opted to employ this process. These modelling processes 
are also called stochastic modelling. 
 
Forecasting using ARIMA model 
Four (4) steps were followed in ARIMA model application in this study as described by 
Box and Jenkins [20], namely: identification, selecting a candidate ARIMA model, 
diagnostic checking and forecasting. The ARIMA model works where the data are 
stationary. The data were found not significant to non – stationarity, hence differencing 
was not necessary.  
 
Selecting a candidate: the ARIMA model 
The stationary data from Catfish species that were already stationary were then used to 
come up with correlogram and partial correlogram in order to identify an appropriate 
model for the fish landings.  This process is called model identification. It simply 
involved finding the most appropriate values of p and q for an ARIMA (p, d, q) model 
by examining the correlogram and partial correlogram of the stationary time series.  
 
The autocorrelation function ρ(k) at lag k was denoted by: 
 

=(>) =
?(@)

?(A)
                         (4) 

 
Where γ(k) is the autocovariance function at lag k of a stationary random function {Y 
(t)} given by: 
 
B(>) = CDE{G(H), G(H − >)}                                    (5) 
 
Where the PACF had a cut-off at p while the ACF tails off, it gave an autoregressive 
(AR) of order p. Where also the ACF had a non-zero lag at q it gives a moving-average 
(MA) of order q. However, where there was non-zero lag(s) on both ACF and PACF, it 
implied that the application of the autoregressive moving-average of order p and q was 
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possible. It also meant that since the data were not differenced, then the value of q is zero 
(0). 
 
An autoregressive model (AR) of a time series {Xt}is a regression model of that time 
series on its previous history [1].  Autoregressive process of order (p) was found by using 
the following model; 
 

KL =M ∅LOP	 + 	SL

T

PUV

                   (6) 

 
A moving average (MA) model of a time series was aimed at averaging out previous 
error steps of a time series {Xt}to attempt to smooth the process or make the time series 
stationary. Moving Average process of order (q) was found by using the following 
model; 

 

KL =M WP	SLOP	 + 	SL

X

PUV

                             (7) 

 
The combination of linear autoregressive and moving average properties results in the 
autoregressive moving average (ARMA): ARMA of order (p, q) is,  

 
 KL = ∑ ∅+

T

+UV KLO+ +	∑ WP
X

PUV SLOP +	SL       (8) 
 

 
The general form of ARIMA model of order (p, d, q) is  
 
ZL = [VZLOV + [3ZLO3 +⋯⋯⋯⋯+[TZLOT + ]L + WV]LOV + W3]LO3 +⋯⋯⋯⋯+

WX]LOX                        (9) 
 
Where: 
ZL is the original data series or differenced of degree d of the original data at time t; 

]L is the white noise at time t. 
[V, [3, … , [T are the autoregressive parameters.  
p is the autoregressive order. 
WV, W3, …. ,WX  are the moving average parameters. 
q is the moving average order. 
 

Model parameter estimation 
When the model had been identified as AR, MA, ARMA or ARIMA the next step was 
to estimate the best possible parameters of the identified models as a way of model fitting. 
The best possible parameters were found using Akaike Information Criteria [21]. The 
best model was obtained on the basis of minimum value of Akaike Information Criteria 
(AIC) [22]. The AIC was found by the following model: 
 
AIC = – 2 log L + 2m                              (10) 
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Where: 
 m is p + q  
 L  is the likelihood function   
 
The AIC was used to obtain a model that well represented the data on the basis of 
minimum value of AIC.  
 
Model validation 
Diagnostic tests were carried out to check to what extent the forecast could be trusted. 
The diagnostic tests were done by using method of plotting correlogram of the residual 
errors and the Ljung-Box test, as these were widely used and efficient in model 
validation.  
 
Forecasting 
Once the appropriate best candidate ARIMA (p, d, q) model was selected for yield time 
series data for the Catfish species then the parameters of the selected model were 
estimated. The fitted ARIMA models were then used as a predictive model for making 
forecasts for the future (next ten (10) years) of fish landings. 
 
RESULTS AND DISCUSSION  
 
Determining the correct parameter estimates 
To determine the correct model parameter estimates, the following steps were taken: 
 
ARIMA models for Catfish 
The trend analysis by Mann Kendall of time series data of the catches of Catfish results 
in Table 2 showed that the original data did not have a trend (p-value 0.2340). The 
Dickey-Fuller test showed that the original data were stationary (p-value 0.0491) as 
shown in Table 2. With these results from Mann Kendal and Dickey-Fuller tests on the 
original data, it is implied that the original data of Catfish did not require transformation 
through differencing, and hence was ready for modelling with ARIMA process as it was 
stationary.  
 
Since the Dickey-Fuller test on the original series proved that the series were stationary, 
then autocorrelogram and partial autocorrelogram were plotted to determine the values 
of p and q in the ARIMA models. The plotted autocorrelation function showed a first-
order moving average (MA) model, while the plotted partial autocorrelation function 
showed tenth-order autoregressive (AR) model as shown in Figures 3 and 4, respectively 
in the methodology. 
 
The ARIMA model with the lowest AIC values was selected. The value of the AIC of 
the selected ARIMA model was 536.56 as also shown in the Table 3. Owing to that, the 
most suitable model for artisan Catfish landings from Lake Malawi in Mangochi District 
was ARIMA (0, 0, 1) (Table 3), as this model had the lowest AIC value. The chosen 
model described the time series for Catfish with the following parameters estimates: 
 

xt = 0.8916wt-1                  (11) 
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This means that the current total catches of Catfish are influenced by the previous year's 
catch. 
 
Validity of the model 
ARIMA process 
Both ACF for residual errors for the selected ARIMA model of Catfish for the forecasting 
of their landings had no significant lags as shown in Figure 5.  The plotted forecast errors 
of ARIMA models shown in Figure 6 indicate that they had constant variance with a 
mean of zero (0). The ACF residual plot (autocorrelogram) shows that the sample 
autocorrelation at lag 1 exceeds the significance bounds as shown in Figure 5. However, 
this is probably due to chance, as we would expect one out of 20 sample autocorrelations 
to exceed the 95% significance bounds [23]. 

 
Figure 5: Autocorrelation functions (ACF) for residual errors of Catfish forecasts 

 
Figure 6: Plot of residual errors of Catfish forecasts 
 
The Box–Pierce (and Ljung–Box) test results as shown in Figures 7 indicated that Catfish 
selected model had higher p-values. The Box–Pierce (and Ljung–Box) test was used to 
identify a best fitting model among the four most competing models. The Box–Pierce 
test examines the null of independently distributed residuals; it is derived from the idea 
that the residuals of a “correctly specified” model are independently distributed [23]. If 
the residuals are not independently distributed, then it shows that they come from a miss-
specified model. The results of executed Box–Pierce (and Ljung–Box) test on the three 
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most competing models, also depicted ARIMA (0, 0, 1) model as the best fitting model 
as shown in Figure 7.  
 

 
Figure 7: Box–Pierce (and Ljung–Box) test results of residual errors of Catfish 

forecasts 
 
The model with significant coefficients parameters is better in terms of forecasting 
performance than the one with insignificant coefficients parameters [24]. The ARIMA 
(0, 0, 1) still came out outstanding as it has significant parameters as shown in Table 3 
and was confirmed for forecasting of future artisan fishers’ landings of Catfish in Lake 
Malawi in Mangochi District as shown in Table 4.  
 
However, before forecasting, diagnostic checks on the proposed best fitting model were 
made, which involved checking the residuals of the model to see if they contain any 
systematic structure, which still could be removed at this stage to improve the selected 
ARIMA [19, 25]. This study involved several diagnostic checks such as examination of 
the autocorrelations of the residuals of various orders, the Box–Pierce (and Ljung–Box) 
test and plotting of residual errors to see if their mean was zero and are normally 
distributed, whose results are shown in Figures 5, 7 and 8 respectively. The ARIMA (0, 
0, 1) also provided a good forecasting performance as shown by low forecast error 
indicators in Table 4.  
 
In addition to this, the p-value for the Ljung-Box test was 0.9003 as shown in Figure 7, 
indicating that there is no evidence for non-zero autocorrelations in the forecast errors 
for lags 1-20. The Box–Pierce (and Ljung–Box) test also showed that the model fitted 
the series well as the p-value was close to one (1) as shown in the Ljung–Box statistic in 
Figure 7. To check whether the forecast errors have a constant variance and are normally 
distributed with mean zero, time plot of the forecast errors, and a histogram were made. 
 
The histograms of plotted residuals errors for the selected ARIMA model of Catfish were 
normally distributed with mean zero (0) as shown in Figure 8. The histogram of residual 
errors in Figure 8 clearly showed that they were normally distributed with a generally 
constant variance and mean of zero (0). The Figure 8 showed also that the residuals errors 
had generally constant variance. These diagnostic tests proved that the selected ARIMA 
model was indeed a good model that fitted the yield time series data of Catfish from the 
artisan fishers of Lake Malawi in Mangochi District in Malawi, and could be used 
effectively to forecast the species landings. A histogram plotted out of Catfish forecast 
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residual errors indicated that the residuals were normally distributed. The ACF residuals 
errors plots clearly showed that autocorrelation coefficients of the residuals are within 
95% confidence interval and were not autocorrelating with each other. This meant that 
the original series trend in the landings of Catfish was successfully extracted to make a 
forecast.  
 

 
Figure 8: Histogram plot of residual errors of Catfish forecasts 
 
Forecasting 
The forecast revealed a likelihood that the species is under threat cannot be ruled out as 
the confidence intervals did include a zero (0) as shown in Table 4. A good model should 
have a low forecasting error; therefore, when the distance between the forecasted and 
actual values were low then the generated model had a good forecasting power [25, 26, 
19] as proven by the low values of ME, RMSE, MAPE and MAE in Table 3. The forecast 
for artisan landings of Catfish, Catfish from Lake Malawi in Mangochi District showed 
a mean of 361 tonnes (rounded-up to nearest figure) and the mean of the actual catches 
was 362 tonnes (rounded-up to nearest figure) with 95% confidence intervals. These 
results are a clear demonstration that the artisan fishery of Catfish from Lake Malawi in 
Mangochi District will be stable as shown in Figure 9.  
 
Table 4 shows forecasted landings of Catfish using Autoregressive Integrated Moving 
Average (ARIMA) model from 2013 through 2022 for Mangochi small-scale fishery. 
The graph in Figure 9 shows the forecasted trend and the confidence interval of 95% for 
same species. 
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Figure 9:  Ten-year forecasts for annual catches in metric tonnes of Catfish using 

Autoregressive Integrated Moving Average (ARIMA) models 
 
This forecast should alert the policy makers to continue ensuring sustainable exploitation 
of the Catfish among artisan fishers in Lake Malawi in Mangochi District as the ecology 
of this fish species is directly linked to other species in the lake. Currently, Mangochi 
district does not have a fisheries management plan that targets Catfish. There is a need 
to develop the management plan to ensure that this fishery is sustainably exploited. This 
fisheries management plan can be coupled with area specific fisheries management in 
form of bylaws (which empowers local communities) that are crafted towards ensuring 
that the Catfish species are conserved. The forecasted trend shows that the theory of 
‘tragedy of commons’ might be slowly setting in for the species stock as the forecast 
reveals the catches of Catfish will remain the same amidst increased fishers’ population. 
As such, management of the Catfish in this fishery is very crucial to avoid the forecasted 
trend worsening and negatively affecting the other species in the lake.  
 
CONCLUSION  
 
The study showed that the artisan fishery landings of Catfish from Lake Malawi in 
Mangochi District would remain stable amidst increased fisher population. The 
government through Department of Fisheries and stakeholders should continue 
controlling exploitation levels of the fishery by controlling fishing efforts so as to 
maintain this trend of Catfish landings. As the artisan fisheries in Malawi is multi-species 
and multi-gear controlling Catfish exploitation levels should be controlling all fishing 
effort that lands the species such as gillnets, beach seines, open water seines among 
others. Since confidence intervals of the forecasted landings of the fishery included a 
zero, this implied that the possibility that the fishery is being over exploited cannot be 
ruled out. As such, policy makers should ensure that the fishery is sustainably exploited 
while maintaining the stable trend hence saving it from succumbing to the theory of 
tragedy of commons. This can be achieved as well by controlling entry of fishing gears 
landing most Catfish. However, further research should model as well fishing effort to 
compare the behaviour of the catch and effort in the same period of time to provide a 
more comprehensive picture of forecast fishery. 
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Table 1: Descriptive statistics of the time series data 
 

 Catfish 

Minimum  32.29 

1st Quarter 124.50 

Mean 362.30 

3rd Quarter. 378.20 

Maximum 2015.00 

Standard deviation 998.33 

 

 
Table 2:  Mann Kendall test for trend and Dickey-Fuller test for stationarity on 

time series of annual catches of Catfish 
 

  Mann Kendall test  Dickey-Fuller test 

Time series  Tau (t) 
statistic 

p-value  Dickey-Fuller 
statistic 

p-value 

 -0.1380 0.2340 -3.5676 0.0491 
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Table 3: Competing ARIMA models for the time series of annual catches of Catfish from 1976 to 2012 
 

 
ARIMA(10,0,1)  ARIMA(6,0,1)  ARIMA(1,0,1)  ARIMA(0,0,1) 

Parameter Coefficient Std. Error  Coefficient Std. Error  Coefficient Std. Error  Coefficient Std. Error 
AR10  0.7752 0.2626          
AR9  -0.6234 0.2716          
AR8  0.5097 0.2819          
AR7  -0.6292 0.2701          
AR6  1.0431 0.2581  1.4879 0.1218       
AR5  -0.5927 0.2779  -1.0134 0.2279       
AR4  0.2605 0.2999  0.8282 0.2561       
AR3  0.2979 0.2715  -0.7558 0.2491       
AR2  0.3271 0.2281  0.8556 0.2192       
AR1  0.6139 0.1604  -0.6061 0.1250  -0.0944 0.1788    
MA1  0.0962 0.3358  -1.0000 1.1040  0.9085 0.0831  0.8916 0.0797 
Intercept  316.5569 45.5670  312.5438 22.3744  361.3612 87.0580  360.4622 94.5480 

!"  48819  61628  94036  947.27 

Log likelihood  -256.29  -259.84  -265.14  -265.28 
AIC  538.59  537.69  538.28  536.56 
ME  0.3762256  -12.46281  -0.4619485  -0.319132 
RMSE  220.5072  248.2405  134.7127  180.6979 
MAPE  104.5796  134.7127  127.6727  123.1608 
MAE  146.0011  180.6979  202.5072  204.07 
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Table 4:  Ten-year forecasts for annual catches in metric tonnes of Catfish using 
Autoregressive Integrated Moving Average (ARIMA) models 

 
  Catfish 

Year Mean 
(MT) 95 % CI 

2013 273.846 (-329.396, 877.088) 
2014 360.462 (-447.712, 1168.637) 
2015 360.462 (-447.712, 1168.637) 
2016 360.462 (-447.712, 1168.637) 
2017 360.462 (-447.712, 1168.637) 
2018 360.462 (-447.712, 1168.637) 
2019 360.462 (-447.712, 1168.637) 
2020 360.462 (-447.712, 1168.637) 
2021 360.462 (-447.712, 1168.637) 
2022 360.462 (-447.712, 1168.637) 

Confidence Interval (CI) 
Metric Tonnes (MT) 
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