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ABSTRACT 
 

The automated sorting of arecanut kernels is a significant challenge that has not 
been effectively addressed thus far. Scientific grading techniques are necessary 
given the paradigm change toward investigating alternative uses for arecanuts in 
industry and the medical field. This research work emphasizes the relatively 
unexplored aspect of the post-harvest process; quality grading of kernels based on 
physical properties. It aimed to develop a novel approach for classifying unboiled 
(Chali) arecanut kernels cultivated in Goa, India based on their true density, using 
a combination of mechanical and visual techniques. The study explored the 
potential of true density as a quality indicator for real-time grading of the kernels. 
To achieve this, automated grading equipment was devised, utilizing a load cell to 
measure the kernel's mass and the ellipsoid approximation method to estimate its 
volume. A machine vision system captured the top and side images of the kernels 
to measure their volume. Python programs were created to enable image 
acquisition, processing, object detection, measurement and kernel segregation. 
Real-time kernel classification was accomplished by establishing serial data 
communication between the Python code and the Arduino board. The kernel 
segregation process was facilitated by servomechanism and a stepper motor. The 
kernels were classified into acceptable and non-acceptable categories based on a 
threshold value of true density. The research successfully established a method 
that utilizes the physical attributes of arecanut kernels as parameters for quality 
grading. However, the study encountered challenges with the density 
measurements, as the paired t-test results revealed significant differences between 
the kernel true density measured by the device and the true density estimated 
using the weighing scale-water displacement method, indicating a percentage error 
of 13.2%. Addressing these challenges would lead to more accurate density 
calculations, thereby enhancing the overall effectiveness of the kernel classification 
process. Furthermore, the technique allowed for the offline estimation of the 
kernels' porosity, which was found to be 45.3%. In future research, the integration 
of density and porosity measurement systems could be explored for real-time 
quality evaluation based on porosity, offering potential opportunities for further 
enhancement and optimization of the grading process. The technology could be 
further applied to other types of nuts and agricultural products, thereby overcoming 
the limitations of color-based sorting using image processing. 
 

Key words: Quality grading, True density, Machine vision, Arecanut kernel, 
Python 
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INTRODUCTION 
 

Factors like density and porosity, which are notably influenced by moisture content, 
play a critical role in evaluating the characteristics and overall quality of food 
products [1]. The mechanical properties of dried agricultural products vary with 
porosity [1]. Variations in density during the maturation process of agricultural 
products can significantly impact product quality [2]. True density evaluation is a 
valuable tool in characterizing and predicting the quality of dried and processed 
products. Researchers have proposed various non-linear regression models to 
effectively predict the density based on moisture content [3].  
 

Several authors have reported the use of flotation in liquid solutions for density 
sorting, peanuts [2], grapes [4], mulberries [5], and mangoes [6,7]. Rolle et al. [4] 
classified Muscat Hamburg grapes by density using flotation in various salt 
solutions and identified the potential of using densimetric sorting to grade grape 
berries based on quality attributes like skin hardness and berry cohesiveness. 
Wang et al. [5] used a densimetric flotation method to classify mulberries into five 
ripening stages and reported that ripeness significantly impacted their volatile 
composition, color, texture and sensory attributes. Kapse and Katrodia [6] 
investigated the ripening behavior of mangoes in a solution of sodium chloride and 
found that the specific gravity of most mature mangoes fell within a range of 1.0 to 
1.02. Hor et al. [7] used the Archimedes principle to predict mango sensory quality 
during ripening by developing models that included density and maturation time. 
They found that higher mango density correlated decreased firmness. A logistic 
regression model confirmed the relevance of density in predicting mango sensory 
quality. However, the flotation methods were found to be impractical due to 
concerns regarding contamination of the fruits and kernels, which could negatively 
impact their quality. Additionally, the specific gravity of the liquid medium used in 
the sorting process could vary during operation, further complicating the method. 
Zaltzman et al. [2] introduced the fluidized bed medium method for density 
separation of agricultural products with small density differences with magnesium 
sulfate as the medium, overcoming the limitations of liquid solutions.  
 

Image processing has been used by researchers to estimate the physical 
properties like volume and density of dry beans [8], tomatoes, mushrooms, 
strawberries [9], mangosteen [10], mangoes [11], dates [12] and barley grains [13]. 
Kumar et al. [8] used image processing to determine the density and porosity of dry 
beans, comparing results with digital vernier caliper measurements. The study 
identified a linear relationship between bean dimensions and pixel values, 
establishing that bean density indicates their soundness. Concha-Meyer et al. [9] 
developed a computer vision system to measure the density of tomatoes, 
mushrooms and strawberries based on mass and volume. This method showed a 
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strong correlation with the traditional water displacement method, with less than a 
2.3% difference, surpassing other techniques. Alturki et al. [12] devised computer 
vision algorithms to grade dates based on their density, calculated by summing 
pixel intensities for shape description, achieving 99% accuracy. Walker and 
Ponozzo [13] estimated barley grain density by ellipsoid approximation, achieving 
the highest correlation of 0.63 when compared to the gas displacement method. 
These studies highlight the effectiveness of computer vision and image analysis 
techniques in assessing the quality of irregularly shaped agricultural products by 
density.  
 

However, few commercial prototypes are available for real-time density-based 
sorting of agricultural goods. To date, there have been no documented studies or 
research on the utilization of density as a quality grading parameter for arecanuts. 
Kaleemullah and Gunasekar [14] observed a relationship between the density and 
porosity of unboiled arecanut kernels with moisture content. The water 
displacement method, as employed by them and Bulan et al. [15] allows for the 
estimation of the true density of arecanut kernels and fruits. The physical 
properties of arecanuts and the correlation among them can facilitate the 
development of automated grading equipment, integrating both mechanical and 
optical techniques as highlighted by Salunke and Honnungar [16].  
 

This research aimed to combine mechanical and visual techniques using Python 
and Arduino for the real-time classification of unboiled arecanut kernels based on 
true density. Programs were developed for image processing, object detection and 
measurement, kernel segregation, and Arduino interfacing. The method's suitability 
for potential application in automated quality grading of the kernels based on 
density was explored. 
 

MATERIALS AND METHODS 
 

Twenty-five pieces of unboiled arecanut kernels of different sizes, obtained from a 
local farmer and chosen at random, were used for the study. The kernel's true 
density was estimated from mass and volume measurements. A digital weight 
balance of accuracy ± 0.01 gm was used to estimate the mass. The kernel volume 
was determined by a 250 mL graduated cylinder displacing water maintained at 25 
°C, as performed by Kaleemullah and Gunasekar [13]. The bulk density was 
measured by filling a one-liter glass measuring cylinder with the kernels and then 
weighing the nuts as performed by Bulan et al. [14]. Porosity was measured from 
the bulk and true densities using Equation 1 as reported by Kaleemullah and 
Gunasekar [13]. 
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ε = (1 - ρb / ρt) × 100          (1) 
 

where ρb = bulk density in g/cm3 and ρt = true density in g/cm3. 
 

Density-based quality grading system for arecanut kernels 
The block diagram of the proposed system for the quality characterization of 
unboiled arecanut kernels is shown in Figure 1. The automated quality grading 
device shown in Figure 2 consisted of a density measurement system designed to 
measure the mass and volume of arecanut kernels. The hopper transports the nuts 
onto the 3D-printed conveyor made of thermoplastic polyurethane material, which 
is activated by an analog signal from a sensor. The conveyor is driven by a DC-
geared motor of 60 rpm, and an L298 motor driver is used to drive the motor. The 
grading device has gears made of laser-cut acrylic material, and pulleys made by 
3D printing using polylactic acid. A GT 2 standard was used for the pulley, belt and 
idler. An optical proximity sensor was used to detect the kernel on the conveyor. 
The load cell, with an accuracy of ± 0.01 g and a 0 to 1kg range, was used to 
measure the mass of the kernels as they were transferred over it, and an HX711 
amplifier was used to convert the analog signal to digital output. To measure the 
volume of the kernels, a machine vision system with two cameras placed at right 
angles to each other captured perpendicular images from the top and side of the 
kernels. The image acquisition program was developed in Open CV in Python 4 
using the ellipsoid approximation method. The AT mega 328 IC controller 
interfaced to the laptop took inputs from the load cell, and a buck converter 
stepped down the voltage from 12 V to 5 V for the controller. A Python program 
segregated kernels into acceptable and non-acceptable categories based on the 
threshold value of the true density. The Arduino microcontroller relayed output to 
the stepper motor and servo mechanism. The stepper motor pushed the nut 
forward, and the servo mechanism actuated once the program detected a kernel of 
acceptable quality, pushing it into a storage bin. Inferior kernels were allowed to 
move forward and were deposited in a separate box outside the grading 
equipment. A NEMA 17 4.2 kg-cm stepper motor with 1.8-degree resolution was 
used, and an A4988 stepper driver stepped down the power from 24 W to 3 W, 
controlling the steps. A limit switch was used for stepper homing, and an SG 90 
servo (1.6 kg-cm, 4.8 to 6 V) facilitated the kernel segregation.  
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Figure 1: Block diagram of the automated quality grading device for unboiled 

arecanut kernel 
 
 

  
 

Figure 2: Automated quality grading device for unboiled arecanut kernels 
 

Real-time estimation of true density of arecanut kernels 
The device was tested for real-time monitoring of the true density of the unboiled 
arecanut kernels. The process involved placing the kernels sequentially on a 
hopper, allowing them to fall on a load cell, and capturing top and side images 
using cameras. The OpenCV program displayed the mass, volume and true 
density of the kernels in real time on the front panel. Green and red indicators 
displayed the acceptable and rejected kernels, respectively. Table 5 shows the 
measurement readings of true density obtained from the device and DWS-WD 
method, respectively. The experimental threshold density was set at 1.3 g/cm3 with 
a standard deviation of 0.24 g/cm3. The kernels were categorized as acceptable or 
rejected as illustrated in Table 5. The graded kernels were collected in their 
respective bins.  
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Programming and interfacing of hardware and software 
The contents of the main program directory and Python packages used in the 
programming of the system are shown in Table 1 and Table 2, respectively.  
 

Algorithm for the quality grading process  
The algorithm for the automated quality grading process for arecanut kernels is 
illustrated in Figure 3. The application is built using the KivyMD framework. The 
MainApp class in app.py serves as the core component of the kernel sorting 
system, enabling communication between the user and the system for both manual 
and continuous processing modes. The program establishes a connection with the 
Arduino board through serial communication, obtaining data from the cameras and 
load cell. In the event of an Arduino connection failure, the user is prompted to 
verify the connection and port settings, and the program can be restarted. The 
application offers a load cell calibration feature, to ensure accurate weight 
measurements. The conveyor belt moves until a kernel is detected on the load cell. 
At this point, the kernel is properly positioned within the cameras' fields of view, 
and images are captured. OpenCV is utilized for image processing, determining 
the major and minor diameters as well as the length of the kernel to calculate its 
volume. Combining the volume with the measured mass from the load cell allows 
the program to calculate the kernel's true density. For sorting the kernels into 
acceptable and non-acceptable categories, the Arduino code activates the 
servomechanism based on the threshold value. The application provides a user-
friendly interface with a toolbar, navigation drawer and buttons. Users can 
configure various settings, such as serial communication parameters, camera 
sources, thresholds and refresh periods. The interface consists of the main home 
and settings screens, accessible through the navigation panel. Output is displayed 
on the home screen, while the settings screen allows users to adjust necessary 
parameters. To ensure system stability, the application includes a reset function 
that allows reverting to the last saved settings and restarting processing. 
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Figure 3: Quality grading process algorithm  
 

Machine vision algorithm  
The algorithm presented in Figure 4 demonstrates the process of image 
processing and the measurement of the width and height of the arecanut kernels in 
centimeters using a pixel-to-cm ratio obtained from an Aruco marker. The initial 
step involves setting up the necessary variables, such as the video source, pixel-
to-cm ratio, threshold value, and distance. The frame dimensions are configured to 
1280x720, and an Aruco dictionary is loaded along with parameters for marker 
detection. The code continuously reads and processes frames from the video feed, 
converts them into a grayscale image, and computes the intensity values. The next 
step involves applying a binary threshold to the grayscale image using the 
specified threshold value. This operation enables the separation of foreground and 
background, simplifying the subsequent object detection process. The program 
detects the Aruco marker within the binary image, calculating the Aruco perimeter 
and the pixel-to-cm ratio based on the marker's size. Once the Aruco marker has 
been identified, it iterates over the detected object contours. For each contour 
representing a kernel, the code calculates its width and height in centimeters using 
the pixel-to-cm ratio and the dimensions of the kernel's bounding box. 
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Furthermore, it draws the boundary of each detected kernel and displays the 
calculated dimensions on the frame for visual reference. 

 

 
 

Figure 4: Machine vision algorithm 
 

Object detection algorithm  
Figure 5 illustrates the algorithm to perform object detection for the kernel within a 
given frame based on a homogeneous background. The first step involves 
converting the image to grayscale. Then, an adaptive thresholding technique that 
automatically determines thresholds for different regions of the image based on the 
local pixel intensity variations is applied to it. This generates a binary mask that 
segments the image into the foreground (kernel) and background. The program 
locates contours in the mask and iterates over each of them, calculating their area. 
If the area exceeds a predefined threshold of 2000 pixels, the contour represents 
the kernel and is added to a list for storage.  
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Figure 5: Object detection Algorithm 
 

Measure Objects algorithm  
The algorithm depicted in Figure 6 focuses on Aruco marker detection and the 
calculation of the pixel-to-cm ratio of the kernel. The program loads the necessary 
Aruco detector parameters and the Aruco dictionary. Further, the Aruco markers 
are detected within the image, indicated visually by polygons drawn around them. 
The program measures the perimeter of the Aruco marker, which is further divided 
by 20 to determine the pixel-to-cm ratio.  
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Figure: 6 Measure object algorithms 
 

Kernel Segregation Algorithm 
The kernel segregation mechanism is based on the logic depicted in Figure 7. 
Upon powering the Arduino board, the code initializes the serial communication, 
sets pin modes, attaches the servo motor, and establishes the initial position of the 
servo. It then moves the servo motor to this position and calls a function to move 
the stepper motor to a designated home position. Additionally, the code initializes a 
variable and invokes a function responsible for controlling the stepper motor. 
Another function is called to initialize and calibrate a load cell. In the main loop, the 
code continuously checks for incoming serial data and calls corresponding 
functions to perform specific actions based on the received commands. These 
functions facilitate moving the stepper motor to specific positions, bringing the 
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system to a cantered position, executing actions for different states (accept or 
reject), setting the system to standby mode, controlling the conveyor belt based on 
sensor input, and measuring the mass of the kernel using the load cell. The 
commands are outlined in Table 3. Automatic mode runs them as states and 
moves to the next state upon communication from Arduino.  
 

 
 

Figure 7: Kernel segregation algorithm 
 

Arduino Interfacing algorithm 
The algorithm allows for establishing a serial connection between Python and an 
Arduino board. It enables communication, data read/write, and setting 
configurations like port, baud rate, and timeout. The Arduino IDE is used to upload 
a simple sketch to the board, enabling serial communication with the laptop. 
Python code, utilizing the serial module, interacts with Arduino. The user navigates 
to the Python script's directory to execute the code. Table 4 outlines the library 
functions for Arduino interfacing. 
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Statistical analysis 
The statistical analyses were performed using Minitab, and the mean, standard 
deviation, and variance of the true density of the arecanuts by load cell-ellipsoid 
approximation (LC-EA) and digital weighing scale-water displacement (DWS-WD) 
methods were found, respectively. The difference in measurements and 
percentage error was found. A line of equality plot of density measurements using 
both methods was established.  
 

RESULTS AND DISCUSSION 
 

The device's density measurements were compared with measurements obtained 
using the DWS-WD displacement method as outlined in Table 6. The data 
revealed that the maximum true density was 1.55 g/cm3, and the minimum true 
density was 0.68 g/cm3. The mean true density difference between the machine 
measurements and the DWS-WD method was 0.1360 g/cm3, with a standard 
deviation of 0.1145 g/cm3 (95% confidence interval: 0.0888, 0.1832). The mean 
percentage error for true density measurements by the quality grading device was 
found to be 13.18%. The device's true density estimation by the LC-EA method 
was plotted against the results of the DWS-WD method in Figure 8. The paired t-
test results in Table 7 indicated that the kernel true density measured by the device 
significantly differed from the density estimated with conventional methods (P < 
0.05). The bulk density of the kernels was estimated to be 0.63 g/cm3 and porosity 
was obtained using Equation 1. Table 8 shows the measurement readings of 
porosity for the samples and the mean porosity of the kernels was found to be 
45.34 %. Equation 2 reveals the correlation between the densities measured by 
both these methods. The coefficient of determination R2 was found to be 78.76%. 
 

Density LC-EA (g/cm3) = - 0.045 + 1.159 Density DWS-WD (g/cm3)    (2) 
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Figure 8: Line of equality plot for kernel true density measurements 
 
CONCLUSION AND RECOMMENDATIONS FOR DEVELOPMENT 
 

The automated quality grading device successfully segregated the unboiled 
arecanut kernels into acceptable and non-acceptable categories based on the true 
density. The technology can immensely benefit farmers and traders by eliminating 
the tedious task of sorting and quality characterization of arecanut kernels. 
Nevertheless, overcoming the system's limitations is essential to render it viable for 
real-time applications. The technique for mass determination exhibited 
considerable accuracy. The discrepancies observed in the real-time true density 
measurement technique of kernels were attributed to errors in volume 
measurements resulting from the asymmetrical shape of the kernels, leading to 
deviations from the ellipsoid approximation. To enhance the system's accuracy and 
commercial viability, it is necessary to explore alternative techniques in image 
processing. By adopting more suitable volume measurement methods like the 
segmentation approach, the device can be refined to provide more precise true 
density estimations, thereby reducing discrepancies with the current approach. 
Furthermore, by estimating the bulk density, there is an opportunity for real-time 
measurement of the porosity of the kernels. Investigating the impact of bulk density 
on product quality and its correlation with drying parameters could provide valuable 
insights for optimizing the drying process. This entails integrating the density and 
porosity measurement systems to enable porosity-based quality characterization of 
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the arecanut kernels, offering possibilities for enhanced grading and commercial 
viability.  
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Table 1: Main program directory used in the study 
 

Library Source files for image processing and serial communication 
NutSegrigationV1 Arduino code for nut segregator 
Resources Widgets for various custom app objects like panel screens and 

widgets 
screen app screens, i.e., home and settings screen 
app.py Main Python script to be run. Combines libraries, widgets, and 

screens 
requirements.txt Python packages used for the project 
settings.json Contains the app settings to save and use even after it is closed 

and open 
temp.py Testing purpose 

 
 

Table 2: Python packages used in the study 
 

Package  Function 
Kivy and KivyMD For interface 
OpenCV Image processing and display 
Serial Serial communication with Arduino 
NumPy Basic image array processing 
JSON Read/write settings 

 
 

Table 3: Commands for kernel segregation 
 

Key Function 
t Calibrates the load cell to 0 
z Starts the conveyor, stops on detecting a nut, sends 

"s" for success 
c Centers the nut to stage for image processing 
m Measures the weight of the nut 
v Measures the dimensions, volume, and density of nut 
g Passed nut in acceptance slot 
b Failed nut in rejection slot 
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Table 4: Library functions for Arduino interfacing 
 

Function Description 
refresh () Closes the port and tries to connect it again 
write () Writes to Arduino serial bus 
read () Reads from Arduino serial bus 
set_port () Sets com port 
set_baud () Sets the serial baud rate 

 
Table 5: Measured true density of arecanut kernels used in the study*  
 

Sample No. 
Density  
(LC- EA) a 
g/ cm3 

Accept/ 
Reject 

Density  
(DWS-WD) b 
g/ cm3 

1 1.28 Reject 1.08 
2 1.42 Accept 1.21 
3 1.28 Reject 1.09 
4 0.93 Reject 0.79 
5 1.47 Accept 1.22 
6 1.55 Accept 1.28 
7 1.48 Accept 1.16 
8 0.68 Reject 0.68 
9 1.49 Accept 1.19 
10 1.39 Accept 1.27 
11 1.49 Accept 1.46 
12 1.26 Reject 1.16 
13 1.31 Accept 1.22 
14 1.46 Accept 1.35 
15 1.34 Accept 1.2 
16 1.32 Accept 1.18 
17 1.44 Accept 1.34 
18 1.43 Accept 1.29 
19 1.09 Reject 1.17 
20 0.84 Reject 0.88 
21 0.76 Reject 0.80 
22 1.33 Accept 1.05 
23 1.31 Accept 1.07 
24 1.41 Accept 1.19 
25 1.12 Reject 1.15 

* Threshold density for acceptance of kernels: 1.3 g/cm3  

a Load Cell - Ellipsoidal approximation method 
b Digital weighing scale - Water displacement method  
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Table 6: Descriptive Statistics for density measurement N=25 
 

Variable Mean Standard Deviation Variance 
DensityLC-EA a 
(g/cm3) 

1.275 0.24 0.577 

DensityDWS -WD b  

(g/cm3) 
1.1392 0.1839 0.0338 

Density Difference 
(g/cm3) 

0.1360 0.1145 0.0131 

Error (g/cm3) 0.1512 0.0925 0.0086 
% Error (g/cm3) 13.18 8.10 65.64 

a Load Cell - Ellipsoidal approximation method 
b Digital weighing scale - Water displacement method 
 
 

Table 7: Estimation for Paired Difference 
 
µ_difference St. Dev. 95% CI for 

µ_difference 
T- Value P- Value 

0.1360 0.1145 (0.0888, 0.1832) 5.94 0.000 
µ_difference: Difference of Mean of (DensityLC-EA – DensityDWS & WD) 
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Table 8: Measured porosity of arecanut kernels 
 

Sample 
No. 

Density  
(LC- EA) 
g/ cm3 

Porosity (%) 

1 1.28 50.78 
2 1.42 55.63 
3 1.28 50.78 
4 0.93 32.26 
5 1.47 57.14 
6 1.55 59.35 
7 1.48 57.43 
8 0.68 7.35 
9 1.49 57.72 
10 1.39 54.68 
11 1.49 57.72 
12 1.26 50 
13 1.31 51.9 
14 1.46 56.85 
15 1.34 52.99 
16 1.32 52.27 
17 1.44 56.25 
18 1.43 55.94 
19 1.09 42.2 
20 0.84 25 
21 0.76 17.1 
22 1.33 2.3 
23 1.31 51.9 
24 1.41 55.31 
25 1.12 43.75 
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